
Learning tasks using bicycle teaching materials

 First edition September 25, 2018

 Tamaden Industries Co., Ltd.

Chapter1 About the vehicle body ·· 1
1.1 car body structure··· 1

1.1.1 Caster angle･trail･offset ··· 1
1.1.2 Wheelbase··· 1
1.1.3 center of gravity ··· 2

1.2 handle motor ··· 2
1.2.1 Handle motor specifications ··· 2
1.2.2 Relationship between handle angle and encoder ··· 3

1.3 Pedal motor specifications and driving performance ·· 5
1.4 Anti-vibration measures ·· 6

Chapter2 Board mounted devices･hardware ·· 7
2.1 angular velocity sensor ·· 7

2.1.1 Principle of vibration type angular velocity sensor･ principle･ problem ··········· 7
2.1.2 Output characteristics of vibration type angular velocity sensor ····················· 7

2.2 Serial DAC IC2･IC4 (900 version) IC3･IC4 (ARM version) ····································· 10
2.3 Analog (op amp) circuit ··· 11

2.3.1 rail to rail op amp ·· 11
2.3.2 op amp circuit ·· 12
2.3.3 Analog circuit configuration ··· 13

column 2.1 brushed dc motor ·· 17
column 2.2 Various motors ··· 18

2.4 PWM control･H bridge driver ··· 21
2.4.1 PWM control ··· 21
2.4.2 H-bridge operation ··· 22

2.6 remote control light receiving module ·· 24
2.6.1 Overview of light receiving module ··· 24
2.6.2. How to use the remote control receiver module ·· 25
2.6.3 remote control transmitter ·· 25

2.7 three terminal regulator ·· 27
2.7.1 What is a three-terminal regulator ··· 27
2.7.2 How to use a three-terminal regulator ·· 27
2.7.3 How to use a three-terminal regulator (advanced version) ····························· 28

2.8 About A/D・D/A conversion ··· 29
2.8.1 What is A/D・D/A conversion ·· 29
2.8.2 Specific example of A/D・D/A conversion part 1 ··· 30
2.8.3 Specific example of A/D・D/A conversion part 2 ··· 31

column 2.3 sample hold ··· 32
column 2.4 multiplexer ·· 33

Chapter3 Embedded Core CPU ·· 37
3.1 TLCS – 900 Architecture ··· 37

3.1.1 Features of TLCS-900 ··· 37
3.1.2 TLCS-900 register configuration ·· 39
3.1.3 TLCS - 900 interrupts ··· 42

column 3.1 interrupt ··· 43
column 3.2 20MIPS wall ·· 44

3.2 ARM architecture ··· 44
3.2.1 History of ARM ·· 44
3.2.2 ARM sales strategy ·· 44
3.2.3 Semiconductor manufacturer sales method ·· 44
3.2.4 ARM architecture details ·· 45

column 3.3 About low power consumption ·· 48
column 3.4 About CMSIS ··· 48

3.3 About debugging ·· 49
3.3.1 SWD overview ··· 49
3.3.2 Selecting a debug interface ·· 49
3.3.3 Trace function ··· 49
3.3.3.1 About ETM tracing ·· 50
3.3.3.2 About SWV tracing ·· 50
3.3.4 Limitations of real-time debugging ··· 51

Chapter4 program structure ·· 52
4.1 task control ··· 52

4.1.1 Traffic light control with single task ··· 52
4.1.2 Traffic light control by multitasking ··· 54

4.2 program structure ·· 58
4.2.1 Primitive multitasking ··· 59
4.2.2 task management ·· 62

4.3 Assembler and C compiler behavior ·· 63
4.3.1 Arguments and return values (1) ··· 63
4.3.2 Arguments and return values (2) ·· 65
4.3.3 Type conversion by casting ·· 68
4.3.4 Array description ··· 70

Chapter5 Bicycle Control Architecture ·· 72
5.1 Initialization of analog values ·· 72

5.1.1 drift correction hardware ·· 72
5.1.2 Drift correction program ·· 73
5.1.3 Notes on drift correction ·· 74

5.2 handle operation ·· 74
5.2.1 Handle control overview ·· 75
5.2.2 ON-OFF control and proportional control ·· 77
5.2.3 proportional control ·· 77

5.3 pedal control ·· 78
5.3.1 Pedal control overview ·· 79
5.3.2 Pedal speed settings ··· 79
5.3.3 Pedal motor speed measurement ·· 80

5.4 automatic attitude control ··· 80
5.4.1 force acting on the bicycle ·· 81
5.4.2 Straight ahead correction ·· 83
5.4.3 Operation using remote control ·· 83

5.5 Attitude control program ··· 83
5.5.1 V2_SCAL() ··· 83
5.5.2 TRNrate() ·· 84
5.5.3 TurnPID() ··· 84
5.4.4 KsyaPID ··· 84
5.5.5 RUDDER(） ··· 85

Chapter6 Using debugging functions ··· 86
6.1 Overview of driving data recording method ·· 86

6.2.1 Debugging steps for ARM version ··· 87
6.2.2 How to output assembler file in ARM version ··· 93

6.3 Debugging procedure for TLCS-900 version ·· 95
Chapter7 Bicycle body production ··· 104

7.1 What is an automatic posture control bicycle ·· 105
7.2 Center of gravity and fulcrum ·· 105
7.3 Scale ratio and accuracy ·· 108
7.4 Stiffness and weight reduction ··· 108
7.5 Component part ··· 109
7.6 Radio control servo story ··· 114
7.7 Servo modification ·· 115
7.8 How to obtain parts and materials ·· 117
7.9 Tools I wish I had ··· 117

index ·· 118

- 1 -

Chapter 1 About the vehicle body
1.1 Vehicle structure

1.1.1 Caster angle/trail/offset

The front wheel of the bicycle has caster angle, trail,
and There are three elements of offset, and each element
is Together, they affect driving performance. Figure 1.1

caster angle：This is the angle of inclination of the front wheel fork. Increasing the caster angle
also increases the trail.
trail :The distance between the grounding point of the wheel and the point where the extension
line of the handle fork axis intersects with the ground. It is said that the longer the trail, the better
the running stability and the more hands-off driving becomes possible.
offset .Distance between handle fork axis and wheel axis. Due to the relationship between the offset
and the caster angle, a force is generated that tries to return the handle toward the center.

If you search the internet or literature, you will find many explanations about the three
elements of the handle. However, the handlebar of this bicycle is operated electrically,
so stability and restorability are not required.
On the other hand, if there is a trail, the moment you move the handle electrically,
the handle fork axis will move left and right, causing vibrations in the bike, so this bicycle
has a trail distance of zero. In other words, the extension line of the handle fork axis is the
grounding point of the front wheel. Trail = 0 is an important item when designing a bicycle
whose handlebars are operated electrically.
1.1.2 Wheelbase

The distance between the front and rear axles is
called the wheelbase. Figure 1.2
Wheelbase, steering angle and turning angle
The relationship is as shown in equation 1.1.

Kturning angleoffset

caster angle

wheelbase

Figure 1.2

offset
caster angle

trail

Figure 1.1

handle angle
Wheelbase

・・・Equation 1.1

In other words, the shorter the wheelbase,
the better the steering will be.If the wheelbase
is lon g, such as a tandem two-seater bicycle,
the bicycle will not be able to turn easily.
Also,since a long wheelbase results in poor
maneuve rability,the speed at which the setting
wheel can be moved (steering speed)is also
rewuired.

The front wheel od the bicycle has caster angle,trail,
and There are three elements of offset,and each element
is Together,they affect driving performance.Figure 1.1

- 2 -

ます。

1.1.3 center of gravity
The higher the bicycle's center of gravity is, the longer the natural period of sway will be,
resulting in more stable riding.
Natural period of shaking ...Equation 1.2

h is the height from the ground to the center of gravity

When making a bicycle body by hand, if the wheels and frame of the body are made of material
with a high specific gravity, the entire body will feel heavy, and you cannot expect it to
ride very well.

summary
The design points of electric bicycles are
.trail. 0 .short wheelbase .center of gravity is high

.Let's try 1.1
As shown in Photo 1.1, by attaching a 30cm ruler to the battery
case in a Yajirobee shape to raise the center of gravity and
giving it the Yajirobee effect, the bicycle's running.characteristics
change.
I think it would be interesting to try using weights other than
a ruler.
It is also possible to add a flight wheel to this position to control
the rotation speed, as in a more advanced version of the
 ``Murata Seisaku-kun.''

The current board only controls the steering wheel and pedals, but it is also possible to prepare
a board that can also control a third actuator. (The shape is slightly different.)
Note 1: The metal electrodes are exposed on top of the battery case, so placing conductor weights
directly on top of the battery case will cause a short circuit in the battery, which is dangerous.
Please insulate.

1.2 handle motor

1.2.1 Handle motor specifications

The handlebars of automatic posture control
bicycles are operated by a DC brushed motor
(Photo 1-2) with a built-in gear head and
incremental encoder manufactured by Citizen
Micro Co., Ltd. Motor specifications are shown
in Table 1.1, Table 1.2, and Figure 1.3.

=2 hT
g

photograph 1.1

photograph 1.2

g

sys2
四角形

sys2
四角形

- 3 -

Model IG-10GM-PW1705A-06 Reduction ratio 1/64
Rated voltage 6〔V〕 Rated current 125〔mA〕or less

Output shaft 163±28〔rpm〕 Output shaft 7.35〔mN･m〕
rotation torque
No-load rotation 203±30〔rpm〕 No load current 90〔mA〕or less

speed
Table 1.1 Motor part specifications

Number of pulses 12 [P/R] 12 pulses per motor rotation
maximum response frequency 20KHz
output channel 90° phase A phase/B phase voltage output
power supply DC3[V]to DC24[V]Current consumption10[mA] or less

Table 1.2 Incremental encoder section specifications

1.2.2 Relationship between handle angle and encoder
The handlebars of automatic posture control bicycles can move approximately 70°
left and right, for a total of 140°.
The handle and handle motor are connected with a gear ratio of 20:34, so the rotation

angle of the handle angle motor is（70°＋ 70°）× =238°

The encoder outputs 12 pulses per motor rotation, so the encoder pulses for a

steering wheel angle of 140° are 12× 64× ＝ 507.7pulse

Figure 1.4 is the encoder output waveform of the handle motor.In order to improve the
encoder resolution, this bicycle's control program samples the B-phase rotation angle
at the rising and falling edges of the A-phase encoder pulse, and obtains twice the
normal count value.Using ± 507.7 counts for a handle angle of ± 70°, handle angle

20
34

238
360

gear ratio
Number of pulses per motor rotation

cable motor

connector

Vcc

GND

CN5

motor

motor M1

2

3

4

5

6

Motor output shaft rotation rate

A phase

B phase

Figure 1.3 Handle motor cable connection

- 4 -

control with a minimum angle of 0.14° is possible.

◇ Let's try 1.12
Let's observe the output waveform of an incremental encoder to understand how it
works.
Things to prepare: Automatic posture control bicycle, remote control, oscilloscope
(one that can stop the image), 2 oscilloscope probes
Observation method: Observe the waveform between Pin 3 (A phase) and Pin 4 (B
phase) of the handle motor connector CN4 and GND. The vertical axis of the
oscilloscope measures 2V/div, the horizontal axis measures 2ms/div, and a normal
single trigger. Turn on the power to the bicycle and remote control, and perform the
work in the following order.

Observation method: Observe the waveform between
Pin 3 (A phase) and Pin 4 (B phase) of the handle
motor connector CN4 and GND. The vertical axis of
the oscilloscope measures 2V/div, the horizontal axis
measures 2ms/div, and a normal single trigger.
Turn on the power to the bicycle and remote control,
and perform the work in the following order. ①
Connect the ground leads of the two probes to the
GND check pin on the board using pin clips. Photo 1.3
② Remove the hooks and tips of the two probes and
touch pins 3 and 4 of CN4 directly with the probe
contacts. Photo 1.3③Use the remote control to move
the handle slightly to the left or right and observe the
A-phase and B-phase waveforms at the same time.
Photo 1.4

Note: Divide the work among multiple people: the person holding the probe, the
person operating the remote control, and the person operating the oscilloscope.④
Operate the handle left and right to observe the waveforms of phase A and phase B.As
shown in Figure 1.5, when steering to the left, phase A lags, when steering to the
right, phase A advances, and as the steering speed increases, the frequency of the
output wave increases.

rising edge Falling edge

Figure 1.4 Encoder output waveform

A phase

B phase

Photo 1.4

Photo 1.3

-5-

A phase

B phase
left steering right steering

Figure 1.5 Encoder output phase waveform

1.3Pedal motor specifications and driving performance

Automatic posture control bicycle pedal motorDong Hui

motor Industrial co.,Ltd(Built-in gear head and

incremental encoder made in ChinaDCBrushed motor

(photo)1.5)is. Show motor and encoder specifications1.3

Figure the connection diagram1.4It is shown in .

photograph1.5 Comes with brush for brushDCMotor
 mold GM12-N20VA-09220-150-EN Reduction ratio 1/150
 Rated voltage 6〔V〕 Rated current 120〔mA〕
 Rated rotation speed 11700 [rpm] Motor rotation Motor shaft torque 2.5 [g･cm]
 No-load rotation speed 15000〔rpm〕 No load current 28 [mA]
 Encoder pulse 3〔P/R〕 Output channel 90° phase A phase B phase
 Encoder power supply 3.5 [V] ~ 20 [V] Power current 5 [mA] ~ 10 [mA]

table1.3Pedal motor/encoder specifications

Other numbers regarding the running performance of bicycles are as follows. Rear
wheel external size: 75mm
Motor output shaft pulley diameter: 22mm
Rear wheel side pulley diameter: 20mm
75 when the rear wheel rotates oncemm×π≒235mmThe vehicle moves forward. In order
for the rear wheel to rotate once, the motor must

20

150136
22

　 It rotates and the encoder pulse outputs 409 pulses.

When the bicycle travels 1m 409pulse
1000mm=1741

235mm
 A pulse is detected.

Since the pedal motor is designed for forward movement only, the encoder uses only the A phase to
calculate speed.
This vehicle speedVThe number of pulses proportional to the handle angle μ for automatic attitude
control is calculated as shown in equation 1.4.

-6-

2
tan=K
V

･･･formula 1.4

1.4Anti-vibration measures

Automatic posture control bicycle has photo sensors that detect tilting and turning1.6 It is installed on the
control board as shown in the figure.
This sensor is easily affected by vibrations transmitted by wheels and motors, and vibrations become
electrical noise, which causes large errors in attitude control calculations.

However, if you increase the amount of vibration isolating material to an extreme in order to eliminate
vibrations, there will be a time delay in the sensor's response to actual tilting or turning, making it impossible
to control the attitude.

For this bicycle, the entire control board with the sensor installed is photographed.1.7It is lifted from the car
body using alpha gel vibration damping material with double-sided tape.

 Photo 1.6 Sensor Photo 1.7 α gel vibration isolation material

Vcc
2

3

GND
4

赤

コネクター

CN5
A相

5

緑

茶

青

6

紫

B相

モーター

M黒 1
モーター

図1.6 ペダルモーター・エンコーダー接続図figure1.6 Pedal motor/encoder connection diagram

 motor

 motor

 A phase

Turning angular velocity
sensormaterial α gel vibration damping

Tilt angular velocity
sensor

B phase

-7-

Chapter 2 Board mounted devices/hardware

2.1angular velocity sensor

2.1.1Principles, usage, and problems of vibration type angular velocity sensors

Figure 2.1 Absolute angle
ofEarth Sesame

The Murata Manufacturing Co., Ltd. angular velocity sensor
(ENC-03 R□-R) used this time is a vibration type angular
velocity sensor.

Vibrating bodies, pendulums (Foucault's pendulum),
spinning tops (mechanical gyro), etc. try to maintain their
current absolute angles. For example, as shown in Figure

2.1, when a globe placed on the earth is viewed from space, the axis of the top remains in the
same direction regardless of the rotation of the earth, but when viewed from the earth's
coordinates, the top's axis changes by the angle of rotation. The axis is moving. This is a
gyroscope.
In the case of a vibrating gyro, which operates on a principle similar to Foucault's pendulum, the
piezoelectric vibrating body tries to maintain its current absolute angle, but when an external
force with an angular velocity is applied to it, a Coriolis force proportional to the angular velocity
acts. Masu. A vibration-type angular velocity sensor is a sensor that generates a voltage
proportional to this Coriolis force.

However, the output signal of this angular velocity sensor is Drifts affected by temperature
changes are large Also vibrates the sensor30kHzContains a lot of noise before and afterTherefore,
some ingenuity is required in order to use the angular velocity signal output from the sensor.

Idea ① Low pass filter

Amplify the sensor signalOPAmplifier (schematic diagram)OP02·OP03)On the negative feedback
side1000pFA capacitor applies feedback to suppress the amplification of high frequencies,
creating a low-pass filter.

Idea ② Automatic drift correction

Tilt angular velocity sensor signalOPAmplifier (schematic diagram)OP01·OP02·OP03)DC analog
amplification is performed by several hundred times.
In order to correct the drift of the angular velocity sensor in this DC amplification, the serial
inputDAC (Digital to analog converter)IC2usingCPUThe analog input (P51/AN1)The center of
the signal is within the analog input range (0V〜3.3V)Near the center of (1.65V)so that it
becomesCPUOutput the correction value from the program from the side.OP02ofFourAnalog
addition is performed at pin No. 3 to cancel the drift.

Related pages:『2.2serialDAC” 『5.1.Initialization of analog values”

2.1.2Output characteristics of vibration type angular velocity sensor

Vibration type angular velocity sensor (ENC-03□-R)Photograph the outline of2.1Shown below.
This sensor is2To reduce interference between each sensor assuming that it will be used in an
axis2Two oscillation frequencies are available.

-8-

 mold given name Oscillation frequency

 ENC-03RC-R 30.8kHz

 ENC-03RD-R 32.2kHz

Next, we will explain the rotation angle and analog output of this angular velocity sensor. Diagram on
angular velocity sensor2.2Diagram when giving a rotation angle like2.3You will get a sensor output
like this.

Photo 2.1 Angular velocity ensor

As shown in ① in Figure 2.3, perform constant angular
velocity movement up to a rotation angle of 180°, then
stop for a certain period of time, perform constant angular
velocity movement in the opposite direction with a rotation
angle of 360°, and after stopping for a certain period of
time, return to the original position at a rotation angle of
180°. It returns with constant angular velocity motion.

At this time, the angular velocity is ② and the angular
acceleration is ③, but the analog output of the ④ sensor
has a waveform that is halfway between the angular
velocity and angular acceleration.
This sensor's analog output saturates when constant angular
velocity motion continues (1 to 2 seconds), so it is not
suitable as a control sensor for large bicycles (such as 26-
inch models) that have a slow inherent shaking cycle.

Figure 2.2 Sensor rotation direction

+180

time

Figure 2.3 Sensor output waveform

② Angular
 velocity

③ Angular
 acceleration

④ Sensor output

① Angle
 -180

CW(+) c CCW(-)M
C

XXX

-9-

◇ Let's try 2.1 Let's check the characteristics of the angular rate sensor in the order shown
below. In the case of tilt sensors, the OP amplifier 3 output pin 1 is the easiest point to see.

(1) Turn on the bicycle and remote control and warm up for about 10 minutes.
(2) Press the stop button switch on the remote control to perform automatic drift compensation.
(3) After the flicker stop of the L1 lamp, apply the oscilloscope probe contact directly between
Pin 1 and GND of OP amplifier 3 and observe the output wave while rocking the bicycle. At
this time, care must be taken to ensure that the probe contact does not deviate from the first
pin of the OP3. If the probe of the OP3 Pin 1 seems to be difficult to hit, a check pin can be
installed. Now that the DIP components are gone, even a board modification such as adding a
check pin requires a little technology.
 OPamp 3 1st pin land shown in photo 2.2 to photo 2.3 at 1.5mm squareφ Solder a check

pin with a 1mm hole as shown in picture
2.4.
The hook tip of the probe can now be
connected, but the land is not very
strong, so be careful not to apply strong
force and measure.

Photo 2.2 Check pin on OP3

 Photo 2.3 Check pin Photo 2.4 Check pin installation completed

Add check
pin here.

2.2 Serial DAC IC2, IC4 (900 version) IC3, IC4 (ARM version)

The timing diagram for serial synchronous communication is shown in Figure 2.4.
When SYNC is LOW, data is active and data is read at the falling edge of the clock
SCLK. Data is read from the MSB side, and after the LSB is read, it is output to
the DAC register.

The technical details of the resistor string DAC, R/2R ladder DAC and ADC will be
explained later.

Photo2.5 Serial Interface DAC

Figure 2.4. Synchronous communication timing diagram

The control board for this bicycle uses the Analog Devices se-
rial interface DAC AD5611BKSZ (Photo 2.5). Its main speci-
fications are shown in Table 2.1.

Item Contents

0.5V s

-11-

2.3 Analog (op-amp) circuits
2.3.1 Rail- to -Rail Op Amps

uses the Analog Devices op-amp AD8515 (Photo 2.6) . This
op-amp is a very easy-to-use element that has rail -to- rail
input and output and can operate on a single power supply.
Here, we will first explain the input and output operating
ranges, which are the basis of how to use an op-amp.

Input side operating range:
A typical input circuit of an operational amplifier is a
differential amplifier circuit as shown in Figure 2.5 .
In this circuit, the input Vin requires a level that is VBE
(dead band of approximately 0.6V) higher than VEE, and
since there is at least a loss (dead band) on the Vcc side
due to the current mirror circuit, the operating range of Vin
is between (Vcc - dead band) and (VEE + dead band) .

Output side operating range:
A typical op amp output circuit is a complementary circuit
as shown in Figure 2.6 . In this circuit diagram, the output
voltage swing range is (Vcc-V BE) to (V EE +V BE) .
As you can see, even if we look at only the input and output
circuits, we cannot simply use the full power supply
voltage.
DC amplifier with multiple stages of transistors directly
connected , voltage losses occur in circuits other than the
input and output circuits as well . As shown in Figure 2.7 ,
the operating range of a general-purpose op amp is (Vcc -
1.5V) to (V EE + 1.5V) .
Op-amps that can be operated with a single power supply
can be used up to the full power supply voltage on the lower
side, but there is a non-usable range of about 1.5V on the
Vcc side .
Rail -to- rail (full to full) devices use the full power supply
voltage, but there are also elements that are rail -to- rail
on the output side only and rail -to- rail on both the input
and output sides , so please check the specifications on the
data sheet when selecting elements.

図2.5 オペアンプ入力回路

Vcc

Vin1 Vin2

OUT2OUT1

RE
VEE

Vcc

IN OUT

VEE

VBE

VBE

VEE

Vcc

1.5V 1.5V

1.5V

汎用

ｵﾍﾟｱﾝﾌﾟ

単電源操作

ｵﾍﾟｱﾝﾌﾟ

ﾚｰﾙtoﾚｰﾙ

ｵﾍﾟｱﾝﾌﾟ

Photo 2.6 Operational amplifier
AD8515

Figure 2.5 Operational
amplifier input circuit

Figure 2.6 Operational
amplifier output circuit

Figure 2.7 Operating range of
operational amplifier

General purpose Single power rail to rail

-12-

2.3.2 Operational amplifier circuit
This section provides a general explanation of the operational amplifier circuit used in
the control board of an automatic attitude control bicycle.

・Follower circuit (Figure 2.8)
Vin

Figure 2.8 Follower circuit

Addition is performed based on A,

Based on A
1

fR
R

 is inverted amplified.

 Figure 2.9 Adder circuit

When using an operational amplifier with
negative feedback, the input terminals (-) and (+)
are virtually shorted and have the same potential.
The follower circuit feeds back 100% of Vout to the
(-) input terminal, so Vin = V(-) = Vout, and the
amplification degree is 'I', which is non-inverting
amplification.
Followers are used to convert high-impedance
circuits that cannot absorb energy into low-
impedance circuits that can conduct current.

・Addition circuit (Figure 2.9)

Since point A of the output of the adder circuit is
virtually grounded,

Addition in equation 2.3 is performed based on A
point.
The virtual ground potential of ○A can be changed
arbitrarily by changing the potential of the input
terminal (+).

・inversion amplification

Figure 2.10 shows an inverting amplifier circuit
with VR for variable amplification and capacitor
C1 for high-cut filter. The amplification factor can
be varied from 10k/10k=21 times to 200k/20k=10
times.
For filter characteristics, calculate the frequency
where Rf=XC1.

R ･･･Find f from equation
2.3.

The filter effect starts to appear around 800Hz.

 1 2 () out f V R I I

1 2

1 2
() in in

f
V V R
R R

2 R R Under the conditions of

1 2
1

= () f
in in

R
V V

R

addition
Amplification

2 f fc
1

2 f
f

R C

R

800Hz･･･formula 2.4

Figure 2.10 iterative amplification

-13-

 2.3.3 Analog circuit configuration

Analog amplify the angular velocity
sensor signal from Section 2.1 using
the operational amplifier described
in Section 2.3 and input it to the
ADC built into the CPU.
The magnitude and characteristics
of the signals handled by this
analog amplifier circuit are
explained using Figure 2.11.

sensor output voltage

Reference output: 1.35V±0.15V

±0.15V is the output change due to temperature drift, etc.
Sensor signal: The maximum change level of the output signal when the bicycle is
running is about 50mVP-P. The sensor signal contains a lot of 30kHz carrier noise and
vehicle body vibration noise.

CPU analog input

The analog input range on the CPU side is 0 [V] to 3 [V], so the best situation is for the
signal to swing by a maximum of ±1.5 [V] around 1.5 [V].
∴This sensor signal amplifier must be designed to comply with the following items.
・±0.15V temperature drift countermeasure
・DC amplifier with an amplification factor of about 100 times
・Noise countermeasures
The operation of this amplifier will be explained using the analog circuit diagram for tilt
sensor shown in Figure 2.12.

Figure 2.11 Analog signal size amplification

Figure 2.12 Analog circuit schematic diagram

follower

sensor

additive
amplification

amplification

virtual signal zero

 Serial

 analog input

Automatic
drift
 correction
serial
output

-14-

・Follower OP1
Since the output impedance of the sensor is high, a follower amplification is installed to
lower the impedance. If the input resistor R1 of the summing amplifier is connected
with high impedance, an error will occur in the summing operation.

・Additional amplification OP2
The sensor signal passed through the follower and the automatic drift correction value
output from the CPU are added here, and the center of the angular velocity signal is
adjusted to a potential near the center of the amplification range.

・Serial interface DAC IC2
A DAC (AD5611BKSZ) connected to the CPU via synchronous serial communication
converts the automatic drift correction value into digital to analog and passes it to the
summing amplifier.

・Virtual signal zero
Using R5 and R6, connect 1.5[V], which is obtained by dividing the 3[V] power supply, to
the (+) terminals of OP2 and OP3, and set 1.5[V] as the signal zero of this amplifier
circuit, 1.5[V] ±1.5[V] is the amplification range.

・Amplification OP2・OP3
OP2 is a 10x fixed gain and OP3 is a variable gain amplifier circuit.
Capacitors C1 and C2 are attached to the negative feedback side to form a high-cut
(low-pass) filter.

・Automatic drift correction
A correction value is calculated in the CPU so that the average value of the analog input
to the CPU is around 1.5 [V], and is output to the OP2 adder circuit via the serial DAC.

 ◇Try it 2.2
Let's understand the basic operation of an operational amplifier.
We will explain operational amplifier feedback using the most basic inverting amplifier
circuit shown in Figure 2.13

An operational amplifier amplifies the
voltage difference between the input (-)
and (+) terminals by more than 100,000
times, so if you apply feedback from Vout
to the (-) terminal with R2 as shown in
Figure 2.13, the (-) terminal and (The
circuit is balanced when the potential
difference between the +) terminals
disappears.
When the circuit is balanced, the
potentials of the (-) and (+) terminals are
equal. This is called virtual ground or
virtual short circuit.

Figure 2.13 Inverting amplifier circuit

10K 30K

When the circuit is balanced, the potentials of
the (-) and (+) terminals are equal. This is
called virtual ground or virtual short circuit.

R2

- 15 -

 If Figure 2.13 is represented as a seesaw
diagram of the resistance ratio of R1 and
R2, it becomes as shown in Figure 2.14.
Since the (+) terminal is grounded and
has 0V, the (-) terminal must also be
grounded at 0V. It works in order.
In order to confirm the basic operation of
an operational amplifier, let's create the
operational amplifier test circuit shown
in Figure 2.15 on a bullet board and
measure the input/output characteristics
and frequency characteristics.
The operational amplifier used in Figure
2.15 is a general-purpose product that
has two operational amplifier circuits
built into an 8-pin package.

Figure 2.14 Explanation of virtual grounding

The parts used in this circuit can be supplied by our company.

 orange

 orange

 purple

yellow

yellow

This is virtual
grounding.

When the output drops to -3 [V], the
(-) terminal becomes 0 [V].

I set the input
to 1 [V].

The potential of the (-)
terminal attempts to rise.

If the (-) terminal goes up,
the output goes down.

- 16 -

The circuit configuration is such that the first stage (OP1) converts the outputs of VR1
and VR2 into impedances using a follower, so that the next stage's operational
amplification calculation can be performed without error. The second stage is a
differential amplification with a gain of 2x.
Please follow the steps below to measure.
Measurement ① Inversion amplification
○- Vary the input voltage and measure the change in the output voltage.
Turn VR2 to set check terminal CH2 to 0 [V].
Set SW1 to the lower side and turn VR1 to change CH1 from -6 [V] to +6 [V], measure
the voltage of output CH5 at that time, and plot it on a graph. Since it is an inversion
amplification, the result shown in Figure 2.16 can be obtained.

Measurement ② Non-inverting amplification
 ○+ Vary the input side voltage and measure the change in the output voltage.
Turn VR1 to set check terminal CH1 to 0 [V].
Turn VR2 to vary CH2 from -6 [V] to ±6 [V], measure the voltage of output CH5 at that
time, and plot it on a graph.

Measurement ③ Inversion amplification with offset
○+ Give an offset of +1 [V] to the input side, ○- Vary the input side voltage, and measure
the change in the output voltage.
Turn VR2 to set check terminal CH2 to +1 [V].
With SW1 at the bottom, turn VR1 to change CH1 from -6 [V] to +6 [V], measure the
voltage of output CH5 at that time, and plot it on a graph.

Measurement ④ Non-inverting amplification with offset
○- Apply an offset of +1 [V] to the input side, ○+ Vary the input side voltage, and measure
the change in the output voltage.
Turn VR1 to set check terminal CH1 to +1 [V].
Turn VR2 to vary CH2 from -6 [V] to ±6 [V], measure the voltage of output CH5 at that
time, and plot it on a graph.

 2 1 6
0

0

- 1 2
- 6

 output
+ 1 2

+ 6
input

Figure 2.16 Inversion amplification characteristics

- 17 -

Measurement . Frequency characteristic confirmation
Check the frequency characteristics that can be amplified by the operational amplifier.

The operational amplifier used in this circuit is of a type that cannot amplify very high frequencies.

Turn VR2 to set check terminal CH2 to 0 [V].
Connect a function generator between AIN and GND with SW1 on the top side, and give an AC
signal of about P-P 10 [V].
Connect an oscilloscope to output terminal CH5 and observe the waveform.
Gradually increase the frequency without changing the input AC voltage and observe the change
 in the output waveform.

If the operational amplifier you are using is TA75358, waveform distortion will start around 20kHz

and the limits of wide frequency range will become visible.

Column 2.1 Brushed DC Motor
Brushed DC motors are small, inexpensive, have a large starting torque, and are very
 easy to use. Using the schematic diagram of a brushed DC motor shown in Figure 2-A,
we will explain how the motor rotates.

・How the motor rotates
The coil and commutator wound around the rotor
shown in the figure rotate.
The permanent magnets on both sides of the
diagram are fixed to the motor case and are called
 the stator. The instantaneous positions of the
brush and commutator shown in the figure are
such that current flows through coil A in the
direction of the arrow, magnetizes the rotor as
shown, and interacts with the stator's permanent
magnet to rotate coil A to the right.
When it rotates approximately 90 degrees, the
commutator's position changes, and current flows
 through coil B, causing it to rotate to the right in
the same way. The rotor continues to rotate by
repeating this action.

・Motor speed and torque

When the rotor rotates, the rotor coil moves in the magnetic field created by the stator's
 permanent magnets, creating an electromotive force in the rotor coil.Although it is a
motor, it is also a generator, and as the rotation increases, the generated voltage also
increases.

In this case, the generated voltage and motor current are shown below.
〔V 〕… Equation 1 A voltage proportional to the rotation speed

 of the rotor is induced.

ME MI

ME K R B＝ ・・

S

S

N N
NS

S
rotate

stator
commutator

brush

rotor

Coil A

Coil B

Figure 2-A brushed DC motor

ME K R B＝ ・・

magnetic flux density
Rotor rotation speed

Other constants

- 18 -

…formula 2

 When the rotation of the motor increases and the voltage

generated by the motor becomes equal to the battery
voltage, there is a limit to the increase in rotation speed.
Since the motor torque is proportional to the current,
according to Equation 2 above, the maximum torque is
when the motor rotation is zero, that is, at startup, as
shown in the torque vs. rotation speed characteristic in
Figure 2-B.

rotor coil resistance

torque

rotate

Figure 2-B Torque rotation speed characteristics of brushed DC motor

Motor power generation voltage
battery voltage

M
M

V EI
r

power motor DC motor brushed dc motor

brushless dc motor

stepper motor

synchronous motor(PM)

induction motor(IM)

synchro motor

celsyn motor

Resolver

Angle detection
motor

AC motor

Stop angle/rotation
 anglecontrollable

Figure 2. Classification of C motors

DC motors have a large starting torque and are inexpensive, so they are
often used in moving parts of home appliances.
In addition, in hand drills and other applications where starting torque is
important, we deliberately rectify alternating current into direct current
and use brushed. DC motors.

This is because AC induction motors lack starting torque.
Recently, trains have been equipped with inverters, but most trains from a
while ago were powered by DC motors.
Streetcars still use DC motors. The reason is that the starting torque is large.

 Column 2.2 Various motors

Figure 2.C classifies motors by type, rotation principle, and application.
Let's briefly explain the uses and characteristics of each motor.

- 19 -

①　Brushless DC Motor/Synchronous Motor (PM)
The brushless DC motor that rotates inside the hard
disk and the synchronous motor that moves hybrid
 bicycles and large machinery in factories are actually
 motors with the same mechanism.

As shown in Figure 2.D, the surrounding area (stator)
 consists of three-phase coils, and the central rotor
 consists of a permanent magnet (PM), and the current
 position (current angle) of the rotor is detected by a Hall element.
Since you know the position of the surrounding coils and the
rotor position, you can know which coil to excite next and
in which direction it will turn. It is also possible to stop
at the target position if necessary. The rotation of the brushless
DC motor/synchronous motor (PM) is completely synchronized with the command.
The motor is driven by a dedicated motor driver or inverter. It will not turn even if
you connect an AC power source or battery directly.

②　Stepping motor

Since the rotation speed and rotation angle of a stepping motor can be directly
controlled with a resolution of the number of steps, open-loop rotation control is easy.

However, since the rotation is a step motion, there are some aspects that are difficult
to handle, such as vibration and resonance, and loss of synchronization where
electrical and mechanical motions do not match.

Figure 2.E is a schematic diagram of a two-phase stepper motor.
The rotor is a magnet with fine teeth all around it.
The stator has A-phase and B-phase coils arranged in pairs around the entire
circumference with 1/2 tooth mounting positions shifted.
Figure 2.E shows the state immediately after the B phase is driven to the suction
side. Next, when the A phase is driven to the suction side, the rotor rotates to the
right and advances one step. A special driver is required to rotate the stepping motor.

N S

U phase

V phaseW phase

HVHU

HW

Hall element

Figure 2.D brushless DC motor

Figure 2. E-stepping motor explanatory diagram

A phase B phase

stator

rotor

- 20 -

③Synchro motor
Rather than a motor that converts electrical energy into mechanical energy, there is
a motor that detects the angle and sends the rotation angle. Many people may not be
familiar with them, but here we will introduce the most commonly used synchro
motors.

Figure 2F shows the structure of the
synchronized motor.
The stator has three sets of coils located at
120 degrees each, which are star-connected
and taken out to the outside. (S,S,S)123 A
set of coils comes out from the rotor via a
slip ring. Usually the rotor
It is used by adding AC power between
R1 and R2.1 2

Connect the wires as shown in Figure 2G,
and when you rotate the TX side, the TR
side will also rotate by the same angle.

R1 R2

S1

S2

S3

Figure 2F synchro motor structure

Figure 2G torque synchro

R2R1

TX TR

R2R1

S3

S2S1 S2S1

S3

2.4 PWM control/H bridge driver

2.4.1 PWM control

The handlebars and pedals of the automatic attitude control
bicycle are powered by a brushed DC motor with a built-in
gearhead. This motor is driven by Toshiba's H-bridge driver
IC (TB6552FNG) and is PWM controlled. The TB6552FNG
contains two sets of circuits, A block and B block, as shown
in the pin arrangement shown in Figure 2.17. Figure 2.18

illustrates the operation of a block on one side of the block
using the block diagram for one circuit in the TB6552FNG
and the terminal descriptions in Table 2.2.

 Photo 2.17 TB6552FNG Table 2.2 Terminal description
 terminal arrangement

The TB6552FNG consists of an H-bridge
and a control logic that drives the motor,
as shown in Figure 2.18. The control
logic includes function switching and
PWM modulation input terminals,
which are circuits that can control the
rotation direction and rotation speed of
the motor.

PWM（PluseWidthModulation） The
control inputs a pulse with a variable
duty cycle to the PWM pin, and controls
the speed of the motor by changing the
average value of the current flowing
through the motor as shown in Figure
2.19. In Figure 2.19, the black line
represents the input pulse waveform at
the PWM terminal, and the blue wire
represents the motor current.

- 21 -

Figure 2.19 PWM

control
logic

duty ratio 25％

duty ratio 50％

duty ratio 75％

duty ratio 100％

Figure 2. Block diagram
of 18TB6552FNG

 Function selection of forward rotation, reverse rotation, short
brake, and high impedance by combining N1 and IN2

 Active or standby switching of outputs

 PWM modulation input terminal, creates a PWM waveform on the CPU side.

Connect the output terminal motor

Output is H-bridge operation or high impedance

Control power supply 2.7V to 5.5V

Control GND

motor power

Motor GND

-22-

2.4.2 H Bridge Operation

The operation of the H-bridge is then described using Table 2.3 and Figure 2.20. The
red FET in Figure 2.20 represents the "ON" state, the red arrow represents the drive
current of the motor, and the blue arrow represents the current due to the back EMF.
When the motor is driven, the H bridge is controlled by PMW and repeats forward
rotation A or reverse B and short brake C. However, if the system is instantly
switched from the forward rotation A or reverse B state to the short brake C, a short
circuit current will flow between the FETs due to the delay in the FET switching speed,
which will cause heat generation in the FET. In order to prevent this instantaneous
short circuit, a D or E state of about 300 ns is inserted during the switch from A or B to
C. When switching from short brake C to A or B, the D or E state of about 300 ns is
inserted in the same way as above. At this time, as indicated by the blue arrows of D
and E, the current due to the back electromotive force generated in the coil of the motor
flows to the flywheel diode. Operation diagram F is in a standby state.

 control input output
IN1 IN2 STBY PWM O1 O2 action mode Operation diagram

H H H
H

L L short brake C
L

L H H
H L H Reverse/forward A
L L L short brake C

H L H
H H L Forward/reverse B
L L L short brake C

L L H
H OFF

Stop D E
L high impedance

H/L H/L L H OFF standby F L high impedance
Table 2.3 Input/output functions

Figure 2.20 H-bridge operation explanation

-23-

◇Let's try it

2.3 Let's check the PWM control by
observing the applied voltage waveform of
the handle motor. The applied voltage
waveform of the handle motor is the
voltage waveform between O1 and O2 in
Figure 2.18 and between O1 and O2 in
Table 2.3. In the circuit, pins 1 and 6 of
connector CN4 (Photo 2.8) are easy
positions to apply the oscilloscope probe.

 Photo 2.8 CN4 and probe

In Photo 2.8, the lead of the lead resistor
is inserted into pin 1 of CN4 and pinched
with a pin clip, and pin 6 is directly
applied by the probe contact. The
oscilloscope settings are vertical axis = 2
V/div, horizontal axis = 200 μs/div, auto
mode. With the remote control and the
bicycle turned on, the remote control is
used to operate the steering wheel with
the remote control, and the remote
control is used to apply a deviation, and
the voltage waveform is observed to
change the duty until the handle follows.

Photos 2.9 and 2.10 show the waveforms as described in Section 2.4.2 above. The
direction of the voltage is reversed on the right and left handles. If the deviation is
large, the duty cycle will also be high, and if the handle follows until the deviation
is zero, the voltage waveform will also disappear.

 Photo 2.9 Right-hand drive operation Photo 2.10 Left handle operation

Figure 2.21 PWM control waveform

duty 50%

Back electromotive
force when
switching from A/B
to C

-24-

2.6Remote control light receiving module
2.6.1Overview of light receiving module
Automatic attitude control bicycles are controlled remotely using an infrared
remote control.

shield

On the bicycle side is an infrared remote control receiver module from ROHM Co.,
Ltd.RPM7238-H5KType (photo)2.11)using.
This light receiving module is shown in the photo.2.11Shield case as well as
figure2.22As shown in the block diagram of 37.9kHzEquipped with noise
countermeasures such as a bandpass filter. Since the output is an open collector,
multiple modules can be connected in parallel. For example, by attaching light
receiving modules to the front and rear of a bicycle and connecting them in
parallel, you can control the bicycle from all directions without being affected by
the directivity of the remote control.
The signal waveform received by this module is shown in the figure.2.24as shown
in37.9kHza career in 1200bps This is a waveform modulated with a serial signal.
Signal when carrier is present1', if there is no carrier, the signal will be '0'.

- twenty four -

Operating voltage 2.7V~3.6V
Consumption current 300μA
carrier frequency 37.9kHz
signal pulse width 400μs〜800μs
Received light wavelength 940nm
usage environment indoor
directional H=45°V=35°

shield shield

OUT Vcc GND

Figure 2.24 Signal waveform

-25-

2.6.2.How to use the remote control receiver module

figure2.25shows how to use the remote control receiver module. normal UARTAn
infrared modem is added during communication.
on the sending sideUARTofTXDsignal and carrier37.9kHzofANDIt is modulated by
an element and drives an infrared light emitting diode.
On the receiving side that receives infrared light,37.9kHzAfter removing noise with
a band-pass filter and detecting it, the serial signal isUARTofRXDinput to the
terminal.

Optical communication is a communication method that is easily affected by noise,
so please take measures such as adding a checksum to the message and other
measures to prevent malfunctions from receiving noise from inverter-type
fluorescent lamps.
This light-receiving module is of a type that can receive continuous serial signals, but
the lightreceiving module of a general optical remote control is1There are many
methods that can send only word-sized signals, so be careful when selecting a module.

2.6.3remote control transmitter

Diagrams information such as steering wheel angle, accelerator position, push
button information, etc. from the remote control to the bicycle.2.26It is sent in this
format.

 $ θ A S h *

Figure 2.26 Transfer format

Transfer format is from header $ to terminator *6Fixed length in bytes. The
checksum is θ·A·SThis is an exclusive or. Serial communication isUARTand
the transfer baud rate is1200bpsis.

UP· PB
DOWN·PB

START・PB
STOP・PB

accelerator position

 Handle angle LSB
header

θ θ θ S S S S S

terminator
Checksum

spare

Figure 2.25 How to use the light receiving module

Light receiving
module

Bicycle side (reception) Remote control side (transmission)

-26-

◇ Let's try it2.4

The above diagram2.24Let's observe the
modulation waveform of the remote control
signal explained in . the remote control set
screw6Remove the book, open the lid, and take
a photo.

2.12Take a photo with the oscilloscope probe
as shown.2.13Observe the modulation
waveform. On the remote controlGNDThere is
no check pin. photograph2.12 Like power
pilotLEDPinch the outer lead of the pin clip.

 Photo 2.12 Remote control circuit check
The measurement points are on the circuit
diagram.IC1orIC2 of1No.
pin=UARTofTXD(waveform photo pink)
and2No. pin =37.9kHzcarrier (waveform photo
green) andFourNo. Pin = Modulation output
(yellow waveform photo).
The vertical axis of the oscilloscope is
2V/div·Horizontal axis
500μs/divMeasure with normal single trigger.
photograph2.13 The waveform of the signal
 '1' '0' '1' '1' '0' '0'is.

 Photo 2.13 Modulation waveform
 ◇ Let's try it2.5

Infrared remote controls are not very resistant to external disturbances.
Loss to outdoor sunlight.
The remote control cannot be used in locations exposed to direct sunlight.·Try
using a light or fluorescent light.
What will happen if I use it at the same time as a TV remote control?·Infrared
remote control cannot see with the naked eye whether the element is lit or off, but
it can be used with digital cameras and mobile phones.
If you look through the camera on the obi, you can see that the elements are
shining.

 ◇ Let's try it2.6
I tried connecting the remote control light
receiving modules in parallel.
Lol.
The output of the light receiving module is an
open collector. Because of this, multiple
modules can be connected in parallel (OR),
making it possible to operate from all
directions.
Current automatic posture control bicycles
have a light-receiving monitor pointing
toward the rear.
One joule is installed, so the photo2.14 If you
add a module toward the front like this, you
can maneuver from almost all directions. The
additional module in the photo is attached
Photo 2.14 Addition of light receiving module
to the vehicle body with double-sided tape.

Photo 2.14 Light receiving
 module added

- 27 -

2.7 three terminal regulator
2.7.1 What is a three-terminal regulator

As shown in Figure 2.28, the three-terminal regulator has
three connection terminals (out, GND, in) as shown in
Photo 2.15 and Figure 2.27, and as shown in Figure 2.28, it
is a series regulator that inputs an unstable power supply,
compares the reference voltage with the output voltage, and
controls the voltage so that the output voltage is stable at a
constant voltage.

Output voltages such as 1.8V, 2V, 2.5V, 3V, 18V, and 24 are
available. For this bicycle, we use the three-terminal
regulator TA48L03F shown in Photo 2.15 to create a control
power supply of 3V from 4 AAA batteries (6V).

2.7.2 How to use a three-terminal regulator

Photo 2.16 shows how to use a DIP-type
three-terminal regulator, and Figure
2.29 shows how to use a general-purpose
three-terminal regulator. Since the
three-terminal regulator is a series
regulator, pay attention to the voltage
difference between the input Vin and the
output Vout and the heat generated by
the element.
The minimum input/output voltage
differential, Vin-Vout, must be 1.7 V
for general-purpose regulators and 0.5
V or higher for low-drop regulators.
However, since the calorific value P of
the element is the equation 2.5, which
is obtained by multiplying this
input/output voltage difference by the
circuit current I, the design should
take into account the balance between
the voltage difference and the calorific
value.
P= I(Vin－Vout）〔W〕･･･formula 2.5

 n

Photo 2.15 Three-terminal
regulator

GND

Figure 2.27 Dimensions
 regulator

Photo 2.16Dip type three terminal regulator

Figure 2.29 How to use a three-terminal
regulatorregulator

unstable
 power
supply

stable
power
supply

Reference power
supply

Reverse current protection fast diode

Necessary for impedance correction
of the main power supply

Necessary to ensure responsiveness
to load fluctuations

- 28 -

2.7.3 How to use a three-terminal regulator (advanced version)
In order to increase the current drawn through
the current boost three-terminal regulator, the
external transitor TR and the three-terminal
regulator are circuited like Darlington's
connections, as shown in Figure 2.30.

If the value of Ireg×R exceeds the VBE of TR,
the output current I flows, so

 Ireg × R =VBE ・・・formula 2.5
 Ireg × hFE >I・・・formula 2.6

BE

FE

V RI
h

・・・formula 2.7

This current boost output current is said to be limited to about 5 ～ 6 times that of
the three-terminal regulator used, so if the TR is 50 ～60 for hFE, the R is 5 ～6 Ω.

A voltage adjustable three-terminal regulator
can easily be used as a power supply with a
variable output voltage by changing the
potential of the G terminal, as shown in Figure
2.31. However, since the voltage difference
between the input and output is the variable
voltage range + the minimum input/output
voltage, the amount of heat generated by the
element indicated by the circuit current × the
input/output voltage difference increases, and
design needs to be required.

Figure 2.32 shows an example of a circuit for an
adjustable output voltage power supply using a
three-terminal regulator. The G terminal of the
three-terminal regulator uses an operational
amplifier to set the potential at low impedance.
By supplying the op amp power supply from the
input side, the range of adjustment of the output
voltage setting is extended.

入力
電圧

G
O i

出力
電圧

Figure 2.30 Current boost

Figure 2.31 Variable output

Figure 2.32 Voltage
variable circuit side voltage

variable
input voltage

voltage
adjustment

variable
output voltage

output
voltage input

voltage

- 29 -

2.8 About A/D/D/A conversion
The bike uses a resistive string digital-to-analog conversion (AD5611) and a successive
approximation analog-to-digital conversion (with built-in CPU) for the angular rate
sensor input in the drift correction circuitry. Because analog-to-digital and digital-to-
analog conversions are inverted and circuitically similar, the related A/D and D/A
conversions are described in pairs here.

2.8.1 What is A/D/D/A conversion
(1) A/D conversion: Converts analog values such as voltage into digital values (bit
weights). (2) D/A conversion: Converts digital values (bit weights) into analog values
such as voltages. For example, if you convert an analog value of 6.5 [V] with an
analog input range of 0 [V] ～ 10 [V] to a digital value with an A/D converter with 8-
bit resolution = 256 (0 ～255), the digital value x is

If this is expressed by the weight of 8 bits, it is 128 + 32 + 4 + 1 = 165.

128 64 32 16 8 4 2 1

〇 × 〇 × × 〇 × 〇 なし→×
あり→○

The binary representation is 10100101b and the hexa representation is A5h.

1/4

Figure 2.33 Balance scale

The analog-to-digital transformation of the sequential conversion method is like a
balance in Figure 2.33. Find a combination of weights that balance by switching
weights in order: 1/2 weight, 1/4 weight, and so on. The 8-bit digital value A5h
described above is converted to digital to analog at 10 (V) full scale.

The D/A conversion is the sum of the weights of the bit weights shown in Figure
2.34.

Quantity of electricity to be measured

can be →○

none →×

- 30 -

 + ・・ + ・・ + ・・ ＝165/255×10〔V〕
＝6.445〔V〕

Figure 2.34 Bit weight weight

bit weight ×10〔V〕=6.445〔V〕
In this way, the action of searching for the weighted combinations (bit weights) that
are all balances is called A/D conversion, and conversely, the action of outputting an
analog quantity that matches the weights combination (bit weights) is called D/A
conversion. Note: The reason why the answer is not 6.5V is the full-scale error
described below.
 2.8.2 Specific example of A/D/D/A conversion part 1

Figure 2.35 shows a D/A conversion diagram
using the resistor string method.
For this D/A conversion, as many resistors R
of the same value as the resolution are
connected in series, and as many output
switches SW as the resolution are prepared
at the connection points.
Only one output switch specified by the
binary/decimal decoder is turned on, and the voltage
divided by the series resistor is output.
The resistor string method has a simple
configuration and is advantageous in linearity and
conversion speed.
Also, by using the Vref, GND, and A connections in
Figure 2.35, it can be used as a potentiometer or
electronic volume as shown in Figure 2.36.
However, because the number of resistors and
switches required is equal to the number of
resolutions, the higher the resolution, the larger the
circuit becomes and the more difficult it becomes to
manufacture. (The normal resolution is 8~10 bits)
The maximum number of bits in the resistor string
is 2n-1, so a full-scale error of Vref-1LSB will occur,
but it can be rounded off by adjusting the span.

1 1 1 1
2 8 64 256

Vref

R

SW-2n-1

SW-2n-2

SW-2n-3

R

R

R

R

R

分解能2n個の

抵抗Rと SR

SW-2

SW-1

SW-0

GND

Vout
A

デコ ーダー

2n-1

2n-2

2n-3bn

bn-1

b4

b3

b2

b1

Dn-1

Dn-2

D3

D2

D1

D0

2

1

0

図2.35 抵抗スト リング方式D/A変換

GND

Vref

A

Figure 2.35 Resistor string method
D/A conversion

Figure 2.36 Potentiometer

decoder

 resolution 2n
Resistance R and SR

- 31 -

(2) Flash-type A/D conversion The flash-type A/D
conversion shown in Figure 2.37 is similar to the
resistor-string digital-to-analog conversion, with
the same number of series resistors and
comparators as the resolution, and the voltage
level of the analog input value and the string
resistor are compared. Since the comparator up
to the same voltage level as the analog input
value is set to 'ON', high-speed analog-to-digital
conversion is performed by encoding (encoding)
the number of comparators in the 'ON' state and
outputting it digitally. However, higher
resolutions increase circuit size and power
consumption, which is not very realistic.
Normally, the resolution is up to about 10 bits,
and it is used for image processing and other
purposes by utilizing high-speed conversion
capabilities.

2.8.3 Specific example of A/D/D/A conversion part 2
(1) R-2R Ladder D/A Conversion The resistor-string D/A conversion described in Section
(1) above requires a power of 2 (e.g., 65536 sets of resistors and switches in the case of
16 bits) that is equal to the number of resolution bits, and is difficult to fabricate at
high resolution. Therefore, the shape of the rudder resistor is devised to reduce the
number of resistors and switches, resulting in the D/A conversion of the R-2R ladder
method.

We will use the R-2R ladder method D/A
conversion to explain how D/A conversion
works. In the R-2R ladder method of
voltage summing type D/A variant +
conversion, when switch 8 on the top side
is connected to the Vref side, half of the
voltage of Vref is added to the output, and
at the next switch 4, half of the Vref half
(1/4) is added, and half of the voltage is
added each time the bit goes down.

If the number of bits is infinite, Vout=Vref, but in reality, a full-scale error occurs, and
Vout = Vref-1LSB, which is spanned by the output amplifier. The R-2R ladder can be
easily analyzed using the superposition theorem or the Feng-Thevenin theorem.
Compared to the string method, the R-2R ladder method D/A conversion simplifies the
circuit but reduces linearity due to resistance errors. In particular, the resistance error
is an important factor when the number of conversion bits increases.

When all bits are ON
Vout=Vref-1LSB

Figure 2.38 Voltage addition type R-2R
ladder method D/A conversion

Encoder

Digital
 output

D7
D6
D5
D4
D3
D2
D1
D0

R

R

R

R/2

R/2

analog
 input

Vref+

comparator

Figure 2.37 Flash type
A/D conversion

GND

- 32 -

(2) Successive approximation method A/D conversion

Successive approximation analog-to-digital conversion works in the same way as
weighing weighing. Using the balance in Section 2.8.1 above as an example, the order
in which the A/D transformation is performed is explained. (1) Since successive
approximation A/D conversion cannot be A/D conversion in an instant like the flash
type, the analog input value at the start of conversion is maintained by a Mr./Ms. pull
hold circuit so that the analog input value does not change during A/D conversion.
This is the state in which the amount of electricity to be measured is placed on the
balance plate. (2) Place 1/2 full-scale weight on a weight dish. If the weight side is
light→ now with the weight on it, and the weight side going to (3) is heavy, → put the
weight on it now, put it down and go to (3) and put the 1/4 weight of the full scale on
the weight plate. → the weight side is light, → the weight side going to (4) is heavy
with the weight on it now, put the weight on it now, and go to (4) and do the same
work sequentially with the weight going to (4) 1/8, 1/16, 1/32・・・・・ and so on. (5)
Repeat the same process until the smallest weight, and finally the weight on the
weight dish becomes the weight of the digitally converted bit. Return the Mr./Ms. pull
hold to the Mr./Ms. state. In Fig. 2.39, the R-2R ladder type D/A conversion is a
weight, the comparator is a balance, and the successive approximation register is a
weight plate, and the above (1)~(5) is automatically executed.

In voltage-comparison analog-to-digital conversions, analog-to-digital
conversions that require conversion time, such as successive approximation
conversions, use a Mr./Ms. pull-and-hold circuit to prevent the analog value
from changing during conversion.

Figure 2-C shows the basic shape of the
Mr./Ms. pull and hold circuit.
Op amp OP1 in Figure 2-C selects the
lowest input offset current. The capacitor
C1 for the Mr./Ms. pull hold is a
capacitance on the order of pF. After SW1
is turned off, the analog value of Vin
stored in C1 is retained, resulting in a
Mr./Ms. hold. In a real circuit, the
leakage current of SW1, the natural
discharge of C1, and the offset current of
OP1 determine the performance of
Mr./Ms. pull hold.

analog input

Vin
SW1

OP1
Hold output

C1

Figure 2-C Sample hold

sample・
hold

Successive
approximation
type register

R-2R
ladder type

D/A conversion

Vin digital output

N bit
data path

N

Figure 2.39 Successive approximation method A/D conversion

comparator

-33-

◇Try it out
2.7 Figure 2.40 shows a test circuit for a simplified successive approximation analog-
to-digital conversion that combines a 4-bit R-2R ladder digital-to-analog conversion
with a comparator. Build it on a breadboard or a universal board. The circuit
configuration is explained. 1/2 of OP1 and OP2 convert a resistor-divider circuit
(high impedance) to low impedance using followers. 2/2 of OP2 is a comparator that
compares the analog input voltage to the D/A output of R-2R. When the analog input
voltage < D/A output voltage, LED1 lights up. R5 is a positive feedback resistor that
provides a 10 kΩ/1 MΩ hysteresis range for the comparator. The op amp TB75358
used can operate from a single supply, but the ± 12V power supply is available.
R10~R17 and SW1~SW8 constitute a 4-bit R-2R ladder D/A conversion.

R-2R ladder type

D/A conversion

Figure 2 - A/D conversion with D multiplexer

Column 2.4 Multiplexer

Figure 2-D is an A/D converter with an analog multiplexer (analog signal switch).
Switch multiple analog inputs and perform analog-to-digital conversion in sequence.
Modern CPUs have built-in A/D conversion and D/A conversion, so there is no need
to be aware of the hardware, but a circuit like the one shown in Figure 2-D is built
into the CPU.
The multiplexer can specify individual channels or scan specifications, but it is
inevitably affected by the previous conversion channel.
If the converted value of the previous channel is large, an error will appear in the
larger converted value of the next channel. This is likely due to the charge
accumulated between the multiplexer and the sample and hold. Countermeasures
against this inter-channel interference include: (1) channel placement taking into
account signal priority; and (2) connecting to GND without using the channel
immediately before the important channel.

- 34 -

How to use:
Set the Vref. Fig. 2.40 Turn VR2 in the A/D conversion and D/A conversion test circuit
and adjust the voltage between CH2 and GND so that it is 10 [V]. This voltage is the
full-scale value for the analog-to-digital and digital-to-analog conversions. SW8 ~ SW1
to the ↓'0' side.

[4-bit D/A conversion]
(1) Measure the voltage between CH4 and GND when SW8 ~ SW1 are all downward.
〔SW-0〕
(2)Measure the voltage between CH4 and GND when SW8 ~ SW1 is down, down, down,
and up. 〔SW-1〕
(3)Measure the voltage between CH4 and GND when SW8 ~ SW1 is down, down, down,
down, and down. 〔SW-2〕 (
4)Repeat in this order until [SW-15]. (5) Record in the table below and plot on the
graph.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Have you confirmed that the analog output value changes by 1 LSB due to the
combination of SW8 ~ SW1
SW8 ~ SW1 is a 4-bit D/A converter when operated by a computer. Next, let's use the 4-bit
R-2R ladder digital-to-analog transform to try out the successive approximation analog-
to-digital transformation shown in Figure 2.39.

- 35 -

[4-bit A/D conversion]

① Set the analog input voltage Vin. Rotate VR1 to set the analog input voltage to any
value. (About 7V is easy to understand)
②"Turn SW8 'ON'." This is the same as ② "Place 1/2 full scale weight" in item (2) of
2.8.3 above.
If LED1 does not light up, the weight side is in the same state as light, so go to (3) with
SW8 ON (as it is with the weight you just put on it). When LED1 lights up, the weight
side is in the same state as heavy, so SW8 is 'OFF' (lower the weight you just put on it)
and go to (3).10K

 ③ "Turn SW4 'ON'." This is the same as "Place a weight of 1/4 of the full scale."
LED1 does not light up = the weight is light → SW4 goes directly to ④
LED1 lights up = weight is heavy → SW4 is 'OFF' and goes to ④

Analog input
voltage setting

 CH1
orange

CH3
yellow

CH4
yellow

CH2
orange

- 36 -

④ Execute "Perform the same work sequentially with weights 1/8, 1/16, etc."
Perform the same work as ③ above in the order of SW2:SW1.

⑤The output value of analog/digital conversion is
The sum of the weights of the switches SW that are 'ON' x Vref.
For example, when SW8 and SW1 are 'ON' and Vref is set to 10 [V],
Digital conversion value = (1/2 + 1/16) × 10 [V] = 9/16 × 10 [V] = 5.625 [V] Compare with
the voltage between analog input voltage CH1 and GND.
The converted digital value is about 1 LSB smaller at most. This is the full-scale error.
Turn VR1 a little to change the analog input value a little, and repeat steps 1 to 5 to check
the A/D conversion operation.

- 37 -

Chapter 3 Core CPU for Embedded Automatic Attitude Control
The CPU of the bicycle can be selected from Toshiba Corporation's TLCS-900 type or
ARM type. The optical remote control is only TLCS-900 type. Table 3.1 summarizes
both CPUs. Both CPUs are designed for small-scale embedded applications and
have the same package, operating voltage, and integrated I/O and processing power.
TLCS-900 is a CPU classified as CISC type and ARM is classified as RISC type.

Core CPU Model name specification package

TLCS－900 /L1 TMP91FW27UG ROM=128kbyte LQFP64－P－1010－0.50D

 Toshiba RAM=12kbyte
clock=27MHz

ARM TMPM332FWUG ROM=128kbyte LQFP64－P－1010－0.50E

Cortex－M3 Toshiba RAM=8kbyte
clock=40MHz

Table 3.1 CPU overview

3.1 TLCS-900 Architecture
TLCS-900 is a generic name for Toshiba's original 16/32-bit CISC core CPUs.
Although there are multiple CPU cores, all types have the same set of registers,
which are fully 32-bit, and can use the same compiler assembler, as well as the
ability to repurpose source programs from assembly language descriptions. In
addition, the TLCS-900 distinguishes between 16 bits and 32 bits at the end of L1
and H1, and although there are differences in the ALU, internal bus width, and the
number of stages of the pipeline, the usage including I/O is the same, so from the
user's point of view, the TLCS-900 is a type of core. Processing power is available up
to 80 MIPS with 32-bit CISC instructions. The TLCS-900, the predecessor of the
TLCS-900, was designed to be Z80 upcompatible, and the TLCS-900 is an extended
version of the Z80 in register names, etc., so the Z80 program in the assembly
language description can be used with some modifications.

3.1.1 Features of the TLCS-900
The TLCS-900 is designed with a thorough CISC philosophy to improve
performance, as shown below.

①Generated code is short
A computer is a machine that reads (fetches) and executes instructions (codes) in
memory. Instructions captured in a computer execute pipeline processing, and
generally one instruction is processed at one clock, but since fetching involves
instructions and operands, some things are not completed in one clock, and the
processing power of the computer = fetch speed. In other words, the shorter the fetch
time, the faster the computer processing speed will be, so the TLCS-900 uses variable-

- 38 -

length instructions and mixes operands in the instruction word to reduce the code so
thoroughly that it becomes difficult to disassemble it, thereby improving performance.

② Good addressing orthogonality
Addressing is a method of indicating the data specified by an operand or the storage
location of the data. A computer executes a program written using a combination of
instructions and addressing as shown in the following format.

unsignedintMEM,a; C language description:

a +＝ MEM; Addition of MEM and a

ADD XBC,(MEM） ；Assembly description:
 ；Add 4 bytes from the memory address specified
 ；by （MEM) to the XBC register.

CPUs that are less limited in this combination of instruction and addressing are said to
have good addressing orthogonality. All registers, memory, and stacks can be specified
for addressing. Even if the processing speed expressed in MIPS is the same between
CPUs and CPUs that are limited to only registers, such as RISC type, the actual
execution speed of the program will be several times different.
The TLCS-900 is a CPU with excellent orthogonality of addressing.

③Function to automatically generate an appropriate operand size
TLCS-900 has no jump width restrictions such as segmentation for branch instructions
such as jump instructions and call instructions, and there is no overhead such as
always using operands with the maximum address width.
The compiler, assembler, and linker, which are language tools, can determine the jump
width when reading the source program, so the TLCS-900 language tool automatically
calculates the branch width and selects the appropriate 8-bit, 16-bit, or 24-bit branch
width. It uses an innovative technique to generate width operands.

④Conditional CALL command/Conditional RET command
There are conditional instructions for subroutine calls and returns from subroutines.
On CPUs where conditional CALL cc and RET cc cannot be used, CALL cc is a
combination of Bcc + JSR, and RET cc is a combination of Bcc + RTS, which will
definitely slow down processing by increasing the number of instructions by one.

オペランド
命令

オペランド

第2オペランド

第1オペランド

加算命令

operand
order

operand

2nd
operand

1st operand
add order

- 39 -

⑤ Rich in CISC instructions
There are a variety of instructions unique to CISC, such as MIRR (mirror)
instructions, DAA (decimal correction) instructions, and powerful bit instructions,
and there are no restrictions on operand size, and 8-bit, 16-bit, and 32-bit widths
can be combined, so the result The program code is shortened and can be executed
at high speed.

low-priced, high-performance CPUs like the Raspberry Pi (a bit different from
embedded CPUs) are now easily available, so there is no need to be aware of the
CPU architecture, but embedded CPUs Back when CISC was at its peak, the
architectures of the TLCS-900 and M16/32 (Renesas/Mitsubishi) were two of the
best.
As microcomputer engineers, we poured our energy into understanding his CPU
architecture, and we were very impressed.

3.1.2 Register configuration of TLCS-900
As shown in Figure 3.1, the register configuration of the TLCS-900 is fully 32 bits,
while the register name is upward compatible with the Z80, making it very easy to
use because all registers can be used as an accurator. The register configuration is
unified for all types of CPU cores of the TLCS-900, and programs can be used. The
following is a brief description of the registers.

(1)General-purpose register
There are seven 32-bit general-purpose registers, XWA to XIZ, shown in Figure 3.1,
which can be used as accumulators or index registers.

32 bit

 16 bit

8 bit
 8 bit

general
purpose
register

Dedicated
register

control
register

4 banks

control register

Figure 3.1 TLCS-900 register configuration

As a slight aside

There are four banks of the four XWA to XHL with the same configuration, and bank
switching can be executed with one instruction, so registers can be saved at high
speed during interrupts.The number of general-purpose registers may seem small
compared to RISC-type CPUs of the same class, but this is because compared to
RISC-type CPUs, where all calcula- tions can only be performed in registers, CISC
type CPUs, especially the TLCS-900, use the first operand as the first operand. This
is because addressing is powerful, such as being able to specify a memory area on the
(destination) side, so there is no need for many general-purpose registers.
General-purpose registers can be specified as 8-bit, 16-bit, or 32-bit wide.Figure 3.2
shows a specific example of width specification using the BC register as an example.8
-bit specification: B register, C register, QB register, QC register 16-bit specification :
BC register/QBC register 32-bit specification: XBC register
Note: QB, QC, and QBC are extended instructions and are 1 byte longer.

XBC
 QBC BC
 Figure 3.2 Register width specification

(2) Stack pointer (XSP)
A 32-bit wide register that points to the stack location when operating memory as a
stack. The stack is used to store the return address of subroutine calls, and is used as
a stack frame as a method for passing arguments in the C language.

(3) Status register/flag register (SR/F)
The upper byte of the 16-bit wide register is the status register SR, and the lower
byte is the flag register F.
Figure 3.3 shows the bit arrangement of status register SR. IFF2 to IFF0 are
interrupt mask registers that indicate the interrupt levels that the CPU can
currently accept.

When the value of IFF2 to IFF0 is 1 or less, all interrupts are enabled, and when the
value of IFF2 to IFF0 is 7, interrupts are disabled. After the CPU is reset, IF F2 to
IFF0 are initialized to 7, and when the interrupt enable instruction EI n is executed,
this value becomes n, allowing interrupts up to interrupt request level = n.

- 40 -

QB QC B C

The CPU PUSHes the program counter PC and status register SR. Writes the
 value of the accepted interrupt level +1 to the interrupt mask register IFF.
Increments the value of the interrupt nesting counter INTNEST by 1.

The CPU jumps to the address indicated by the value (0FFFF00H + interrupt
 vector) address data in the vector table, executes the interrupt service routine,
and with the RETI instruction after the interrupt ends, pops the status register
SR and program counter PC, and loads the interrupt nesting counter.

Interrupts are also subroutine calls in a broad sense. The difference between
 an interrupt and a subroutine call is in the method of specifying the jump
destination. In the case of a subroutine call, the jump destination address is
specified in the program like CALL label, but since an interrupt is an event
that starts from a sudden interrupt request event from I/O, there is no place
to write the jump destination. Therefore, a number (interrupt vector) is
assigned in advance to the I/O that requests an interrupt, and a memory area
(interrupt vector table) is prepared in which the jump destination address
corresponding to that number is written. When an interrupt occurs, the CPU
executes the jump destination interrupt service routine written in the vector
table corresponding to the vector number sent from the interrupt controller.

Column 3.1 Interrupts

Decrease
the value of INTNEST by -1.

Interrupt

controller side

interrupt vector
lvector

CPU side

Interrupt

vector

generation

Interrupt

level judgment

comparator

Interrupt

 request F/F

priority

encoder

Priority

setting

register

Interrupt

request F/F

Interrupt

request F/F

Interrupt

request F/F

Interrupt

request F/F

resetFigure 3.6 Interrupt control schematic diagram

3.2.3 Sales methods of semiconductor manufacturers
Each semiconductor manufacturer receives the ARM architecture blueprint from
 ARM and incorporates it into their own CPUs.

3.2 ARM Architecture 3.2.1 History of ARM Company Before explaining the
ARM processor and ARM architecture, I will explain the history of ARM
Company. ARM was established in 1990 as Advanced RISC
 Machines Ltd., a joint venture between Apple Computer, Acorn
 Computer Group, and VLSI Technology. In 1998, the company changed its
name to ArmHoldings when it went public. In 2016, the company was
acquired by SoftBank and continues to operate to this day.

3.2.2 ARM's sales strategy ARM does not manufacture CPU processors,
 but rather sells the right to use the ARM architecture intellectual
 property (IP) license, and receives royalty income from manufacturers who
receive a portion of the CPUs they sell. It is established as a
 company. Currently, there are over 1,550 companies using IP licenses, including
IBM, Motorola, Nintendo, Sharp, and Samsung Electronics.

When MIPS (the number of instructions that can be executed per
 second), which is one of the computer performance indicators, is
 20 MIPS or more, the I/O/memory access time is about 50 ns, which is the
limit of direct bus/direct fetch. If the speed is higher
 than this, cache memory is used to run only the core CPU
 peripherals at high speed, and a ``bridge'' is used to access the low- speed
bus.

As shown in Figure 3-A, a microcomputer consists of a core CPU and memory
(ROM/RAM)/I, each of which is connected by a bus (address bus, data bus,
control bus, etc.). As core CPU speeds increase, if the speed difference between
I/O and CPU increases, it will no longer be possible to connect with a direct bus.

Column 3.2 20MIPS wall

(1) Nested Vectored Interrupt Controller (NVIC) The nested vectored interrupt
controller (NVIC) can be more clearly understood by dividing it into nested and
vectored interrupts. The nested type is a function that appropriately manages the
order of interrupts based on the priority of the interrupt when it occurs. When a
vectored interrupt occurs, it refers to a place called a vector (interrupt vector
 table) where the names of interrupt sources are written, and sends the interrupt
name to the CPU. External interrupts can be set between 1 and 240. Interrupt
priority is set using an 8-bit register divided into two groups. In most actual
products, priority can be set using 3 to 8 bits. When saving and restoring registers
 during tail chaining, preemption , late arrival, and three interrupts, continuous
interrupt processing is possible without unnecessary processing. When an
interrupt occurs, the NVIC handles the interrupt according to the priority of the
interrupt, and at the same time performs a process called stacking to save the
currently used registers.

Figure 3.7 ARM architecture details

Then, each company creates and sells its own CPU processor by adding the
necessary memory, peripherals, input/output, etc., and other functions. This
reduces development time and costs for the architecture within the CPU, while
also making it possible to quickly sell new processors.

3.2.4 ARM architecture details

Figure 3.7 shows the ARM architecture details. I will explain in the
order of the numbers in the diagram.

Figure 3.8 shows the memory map of Cortex-M3.

(2) Instruction fetch unit The instruction fetch unit is a unit that reads the
instruction program to be executed from memory. The read instruction program is
 passed to the decoder.

vendor specific

Dedicated peripheral bus
(debug/external)

external device

external RAM

peripheral

code

Figure 3.8 Cortex-M3 memory map example

stack
data

Initial value of stack
pointer The stack pointer
is a fully descending type
 located in static memory
(SRAM).

Dedicated peripheral bus
(internal)

table3.2General-purpose register list

lower registerR0fromR7is for all instructions that specify general-purpose
registers (Cortex-M3With instructions available in16bit instructions and32bit
instructions). upper registerR8fromR12specifies a general-purpose register32Can
be accessed with bit instructions, but unlike lower registers16It cannot be accessed
 with bit instructions.R13(MSP,PSP)is called the main and process stack pointer,
and stores the current stack pointer position.OSBasically, if you do not
useR13teethMSP(main stack pointer). In addition to general-purpose registers,
table3.3status registers likexPSR· There are interrupt mask registers, control
registers, etc., which can be accessed by special instructions.CPUThis is a special
register for control.

table3.3 Special register list

(5)ALU

ALUteethArithmetic Logic UnitIt is an abbreviation for ``arithmetic logic device''
in Japanese, and performs theoretical operations and four arithmetic operations.
Cortex-M3teeth32bitCPUThereforeALUtoo32Processes bit by bit.

(6)trace interface
(7)memory interface

(8)debug interface
(9)debug system
aboveFourThe items are interfaces and systems related to debugging, which will be
described later.Cortex- M3The debug system isCoreSightThe debug architecture
covers a wide range of debug systems, including debug interface protocols, debug
bus protocols, debug component control, security functions, and trace data
interfaces. These components are typically used only by debugger software and not
by your application.

(10) AHB/APBbridge
coreCPUSurrounding high-speed system busesAHBandI/OLow-speed veriferal
buses such asAPBIt is a bridge that serves as a bridge. thisAHB/APBThe
bridgeARMbus management architecture,Cortex-M0The same bridge is used in .

column3.3 About low power consumption
ARMThe instruction language architecture ofRISCarchitectureCISCarchitecture

CPU(Intelof CoreIt can be said that the hardware size is smaller and power
consumption tends to be lower than that of other models (e.g. series). Also, the
instruction architecture isRISC However, we focused on code density.CICSWe
are designing instructions close to . Therefore, by making full use of coding
technology, he is able to extract performance that exceeds the operating clock of
the processor.

performance high
power consumption

TLCS900H1 Cortex-M3 TLCS900L1
Power consumption low

CMSISaboutcolumn

In the development and maintenance of systems using microcomputers, it is very
 advantageous to utilize technological assets accumulated in the past. ARMThe
company is trying to improve the portability of its software.Cortex- MSoftware
interface standard for series CMSIS(Cortex Microcontroller Software Interface
Standard)announced. This allows peripheral settings andDSPLibrary· ROTThis
improves the reusability of interfaces, debugger interfaces, etc., making
development more efficient.Cortex-MThe series processor itself is also conscious
of standardization.CMSISIt is also designed to accommodate differences in
microcontrollers for easier software reuse. Also CMSISIt also has the advantage
of making it easier to participate in the standard because it is a guideline and
does not require certification.

performance low

3.3 About debugging
Bicycle that doesn't fallARMversion ofCPU TMPM332FWUG(Cortex-M3)has a debug
interfaceCoreSightis built-in, which isARM Cortex-MThis is one of its major features.
CPUIn- circuit emulator as speed increasesICENow that the practicality of
CoreSightteethCPUWhile minimizing the burden onCPUControl, memory access ,
trace functions, etc.ICEIt has the same or better performance.
TMPM322FWUGhas a debug interfaceSWD (Serial Wire Debug)unit and trace output

EMT(Embedded Trace Macrocell)andSWV(Serial Wire Viewer)unit is included.

3.3.1 SWD overview
SWD teeth ARM The company Cortex This is a debugging tool developed
for Core Sightadopted in 2. It is a wire communication interface, JTAGcan be
substituted for Debug control with bidirectional data signal (SWDIO)A clock
synchronized with (SWCLK) of 2 do it with a book ARM This is a proprietary serial
interface. PhysicallyI2C Semi-similar to bus communication2Heavy communication.

3.3.2Selecting a debug interface
As a debugging interface SWD When you select JTAG Compare with table3.4 As shown
 in the figure, the number of terminals to connect the debugger is reduced, which
has the advantage of reducing the connector mounting area on the board.

table3.4 Debug interface terminal name

However, all 2 Two-way communication JTAG Although it is not completely
equivalent to Core Sight It can correspond to Debugger manufacturers provide
optional connectors that are compatible with both, so you will need to select the
interface that your device has. TMMP332FWUG teethSWD Built-in debug interface.

3.3.3Trace function
The trace function ETM(Embedded Trace Macrocell) and SWV(Serial Wire
Viewer)of2 There are different types.ETM Regarding tracing CPUtoETM cannot
be used without this unit.

- 49 -

Figure 3.9 ETM trace timing diagram

Both allow tracing without affecting the CPU program, but there are differences
in the timing and content of the trace. TMMP332FWUG supports ETM and SWV
tracing.
Table 3.5 ETM trace and SWV trace overview.

Below are the characteristics of ETM traces and SWV traces.

3.3.3.1 About ETM trace
The timing diagram of ETM trace is shown below.

If you look at the ETM trace timing diagram in Figure 3.9, you can see that the
data trace timing is traced at the timing of a function transition (program counter
change). Therefore, it is possible to understand the execution path of the program,
 and with high real -time performance, it is possible to trace the status of the
system when it is operating at maximum speed.

3.3.3.2 About SWV tracing
A timing diagram of SWV trace is shown.

Table 3.5 ETM trace and SWV trace summary

function 1

function 2

function 3

Figure 3.10 SWV trace timing diagram

If you look at the Figure 3.10 SWV trace timing diagram, you will notice that the
trace spacing is always the same. This is because the SWCLK signal is used to set
the trace spacing. Therefore, it can be said that tracing is not possible for
functions that finish faster than the SWCLK speed. As a countermeasure, it may
be possible to deal with this by increasing the SWCLK clock speed, but this will
increase the amount of data and may cause trace data to be lost.

3.3.4 Limitations of real-time debugging
The real-time debugger has useful functions such as breakpoints and step
operation. However, when debugging embedded devices, the CPU operation and
I/O operation do not match, so even if you step monitor the CPU side, you cannot
stop the I/O. Since the main task of embedded devices is I/O control, this
debugging work also requires some technique. For example, you can store the I/O
operation history and CPU operation status in memory, and perform a memory
dump of one cycle of I/O operations.

function 1

function

function

- 52 -

Chapter 4 Program structure

This chapter explains the program structure for embedded control equipment.
PC programs running on Windows OS have large task processing units, so they
often keep the operator waiting while the task is being executed.
However, with embedded programs, the object to be controlled is a machine, and
programs are written to ensure the execution speed required by the machine,
without making the machine wait. Although it is possible to write a control
program using an embedded OS such as μITRON, here we will explain the
structure of a program that independently controls a microcomputer.

4.1 Task control
Let's use examples of single-tasking and multi-tasking programs to understand the
problems with single-tasking structures.

4.1.1 Traffic light control using single task

Photo 4.1 shows a push-button pedestrian signal, and the roadside signal is
blinking yellow.
Photo 4.2 shows a security light warning device installed on a traffic light pole that
is only used in certain areas of Japan.
If you press the push button SW attached to the traffic light pole when you are
being followed by a suspicious person, the siren and patrol lights will intimidate
and repel the suspicious person.
First, let's consider the traffic light program.
Figure 4.1 shows the single-task control flow diagram for the traffic light shown in
Photo 4.1, which has a pedestrian push button (PB) switch, the road side is
flashing yellow, and the signal is waiting for an input to the pedestrian push
button (PB) switch.

roadway signal 　　　　　　Pedestrian Signs

siren 　　　　patrol light Security push button SW

Photo 4.2 Security siren・pat light

signal push
button

Photo 4.1 Traffic light

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

- 53 -

Signal light display status (1) and (2) are blinking yellow. A 1 second loop timer is
running in a loop to keep track of the time while monitoring the status of the
pedestrian push button (PB) switch between blinking display states (1) and (2).
In display status (3), (4), and (5), the signal changes from blue to yellow to red, but
the loop timer is still taking time during this time.
Next, let's consider the problems with the single-task structure.
① It is necessary to write the same routine in multiple places, such as checking the
pedestrian push button (PB) switch and loop timer, making maintenance time-
consuming.
②The computer is only killing time with a loop timer and is not doing any real
work.
③ When writing additional programs, the same routine must be added to each loop
timer. When a program is added to the loop timer, the loop timer value changes,
and the counter value must be adjusted each time.
Here, we used the waste of a loop timer as an example to explain why programs
with a single-task structure are not practical. Did you understand?
Next, let's add a security program to the flow diagram in Figure 4.1.
Let's consider a program that constantly monitors the state of the security push
button SW and activates the siren and patrol lights for 3 minutes when the
security push button SW is pressed.
It will be difficult!

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

4.1.2 Traffic light control by multitasking
Multitasking without an OS creates an infinite loop in the main routine as shown
in Figure 4.2, and while going around in the main routine, it checks the start

conditions of each task (thread), and if the conditions are met, it executes the
corresponding task (thread). In assembly code, an infinite loop is created by
returning from the last line of the main routine to the first line with JP MAIN.
When written in C language, for(;;) or while(1) is used within main().

Table 4.1 Traffic light status

Figure 4.3 Pedestrian PB check

Next, we will explain the SW_CHK, TIMER, and SINGO threads.

In the main routine for signal control
shown in Figure 4.2, the 10ms, 100ms,
and 10ms time event flags are checked
in sequence while looping around in
the main routine. When a time flag is
set , the program goes to the
corresponding thread, first turns the
time flag OFF, executes the thread
once, then returns to the main routine
and resumes checking the time flag.

In this way, each task (thread) SINGO,
 TIMER, and SW_CHK is executed.
You can also add any program to the
CALLOPTION position in Figure 4.2.
Section 4.1.3 shows an example of
adding a crime prevention program
(BOUHAN).

Figure 4.2 Signal control main routine

Figure 4.4 Timer A Counter DEC

After waiting for the time set by the execution prohibition timer, the traffic light
 will perform the following actions:

Normally, the roadway signal is flashing yellow, and the pedestrian signal is red
 (no crossing), and it is waiting for an event in which the pedestrian's push button

(PB) switch is pressed. State 1 2 When the pedestrian's push button (PB)
switch is pressed, the pedestrian PB flag turns 'ON', control moves from state 1, 2
to state 3 , 4, 5, and state 3 is set. From each state of state 3, 4, 5, the execution
prohibition timer waits for a time, the roadway signal switches from green to
yellow to red, and when the roadway signal is red, the pedestrian signal turns
green, then returns to flashing yellow, and state 1 2 is repeated, waiting for a

push button (PB) input.

Addendum 3: Add BOUHAN to the CALL
 OPTION position in the same way as SINGO,
 using a 10ms event flag. The crime
prevention program also uses state numbers.
State number 0 is the switch input waiting
state, and state number 1 is the siren and
police light are activated, and the crime
prevention program is in progress.

4.1.3 Adding a security program
The CALLOPTION section of Figure 4.2 shows an example of adding a program
called BOUHAN that activates a siren and a police light for three minutes when the
 security push button is pressed.

Addendum 1: Following SW_CHK1, add Figure 4.6 Security PB Check SW_CHK2.
Addendum 2: Following TIMER1, add Figure 4.7 Timer B Counter DEC TIMER2.

Figure 4.6 Crime Prevention PB Check Figure 4.7 Timer B Counter DEC

Figure 4.8 Crime prevention control program

summary

To maximize the performance of a microcomputer system, one task must not
monopolize CPU resources. Each task and interrupt uses a single CPU at a set

 time (time sharing), so the golden rule is that each task must borrow the CPU
from the main routine and immediately return it to the main routine when it has
finished its work. The CPU must not be used as a loop timer or to wait for I/O.
CPU resources are the shared property of the computer system.

4.2 Program Structure
When dealing with embedded programs, it is essential to understand the

transition from CPU startup to main(), as well as the multitasking that you create
 yourself by manipulating the main routine, interrupts, and subroutines. Even
when configuring multitasking using an embedded OS such as ITRON or Linux,
 the primitive multitasking introduced here is the starting point.

4.2.1 Primitive multitasking
Since both the TLCS-900 and the Cortex-M3 are vector-activated, the program
structure is composed of (1) the vector table to (5) subroutines as shown in Figure

4.9, and the transitions from startup to main() and within main() are also
performed in the same way.

Primitive multitasking enters the main routine after the CPU is started and
initialized, as shown in Figure 4.10. The main routine is an infinite loop that goes
around and around, checking the execution conditions of tasks, subroutines, etc.,
and executing them if the conditions are met.
Also, when an interrupt request occurs, the corresponding interrupt service
routine is executed. Multitasking is achieved by distributing CPU resources
smoothly among tasks, subroutines, and interrupts executed from the main

routine, and using them skillfully. Next, we will explain each program block (1) to
(5) in Figure 4.9. Please use an editor to visually trace the included program and
read the overview of each program block.

(1) Vector table
The vector table is a list of jump destinations when an interrupt occurs. The
TLCS-900 has the vector table located at address FFFF00H , while the Cortex-M3
has the vector table located at address 0 by default.

In the case of Cortex-M3, a vector table with one data item of 4 bytes is placed
from address 0H as shown in List 4.1. Address 0H is the initial value of the stack,
 and Reset_Handler at address 4H describes the start address of the initial
routine in which the system initials and I/O initials are described as shown in
Figure 4.9. Copying this value to the program counter jumps to the start of the
initial routine. Addresses up to 3CH are system interrupt frames such as debug
interrupts, and from address 40H onwards, interrupt vectors from I/O provided by
 the device vendor are placed.

The TLCS-900 vector table is
located from address FFFF00H as
shown in List 4.2, with the system-
related vector area up to address
FFFF1CH and the normal interrupt
 vector area from there.

(2) Initial routine
The actual allocation address value of the first line of the initial is written in the
reset vector, and when the CPU is reset, the reset vector is copied to the program
counter and the fetch of the initial program begins. The initial setting of the
embedded CPU first sets the multiplication of the system clock oscillation circuit
and operates the CPU with the normal clock. This is a method of creating a high-
frequency system clock by analog processing of a clock with an original oscillation
of about 10MHz. For example, multiplication such as multiplying the original
oscillation of 10MHz by 8 to create 80MHz, and then dividing it by 2 to create a 40
MHz system clock to adjust the waveform is commonly done in embedded CPUs.
Next, set the dual-purpose terminal to a dedicated I/O terminal or a general -
purpose input/output port according to the purpose, and then perform detailed I/O
 settings. This work should be done carefully according to the purpose of use, with
the instruction manual of each manufacturer in hand. Finally, jump to main().

List 4.2 Vector table example for TLCS-900

The
Analog5.1 value initialization
 tilt and turning sensors used in bicycle teaching materials are relative value

sensors that have a large temperature drift, so before riding the bicycle, the drift
value must be corrected and the zero points of tilt and turning must be
 established with the bicycle standing upright and stationary. Specifically,
after turning the bicycle's power on, set the bicycle on the starting platform so
 that the body is as upright as possible, and press the stop button on the
remote control, the sensor's automatic drift correction and zero adjustment
will be performed. During the automatic correction, the LED lamp mounted on
 the bicycle's control board will flash, and when the automatic correction is
completed, the LED lamp will go out and standby is complete. Next , press the
start button, and the LED will light up continuously, and from there raise the
accelerator knob and the bicycle will start moving.

Chapter 5 Bicycle Control Architecture

This bicycle teaching material provides three types of programs that perform the

same control: 1) C language program for ARM, 2) C language program for TLCS-9
00, 3) Assembly language program for TLCS -900. The function names and label
names for each program are the same , and the control architecture is also the
same, so here we will explain each program together, listing the related function
names and label names for bicycle control.

5.1.1 Drift correction hardware
The tilt sensor and turning sensor used in the bicycle teaching materials are not
absolute value sensors , but angular velocity sensors that output relative values.
In addition, this angular velocity sensor is more susceptible to output changes
due to temperature drift than to changes in sensor output due to changes in
angular velocity, so as introduced in sections 2.1.1 and 2.1.2, it is a sensor that
requires some ingenuity in how it is handled. This angular velocity sensor
operates on a power supply voltage of 3 [V] and the output signal has a drift
element of about ± 0.75 [V] centered on 1.35 [V], but the amplitude of the signal
due to angular velocity is small and an amplification factor of 100 times or more
 is required. As shown in Figure 5.1, it is possible to

address this issue using an AC amplifier
with an added coupling capacitor C1, but
 adding C1 will result in a high -pass

filter (low-cut filter) that will sacrifice the
 frequency characteristics of the amplifier
 circuit. Therefore, this teaching material
uses a method to correct the sensor drift
using the output of a serial DAC
controlled by the CPU in a DC amplifier,
as shown in Figure 5.2.

Figure 5.1 Op-amp AC amplifier circuit

IN

When a stop button switch command is received from the remote control, drift
correction is performed in the following order. The drift correction sets the ADC
input terminal voltage to about 1.65 [V], half of 3.3 [V], and the AD conversion

value Turn_base, Slope_base or (1042H), (1044H) at that time becomes the
reference value for the AD conversion input. After drift correction, the sensor
input value - reference value becomes the analog input value with polarity.

Check the remote control status bit RC_Sbit() Checks the stop order bit from the
remote control and jumps to RC_STP() if there is an order Jumps from
RC_STP() to Ana_RST(), which prepares the analog reset flag, etc., and turns
ON the reset flag for the tilt sensor and rotation sensor. The LED lamp starts

flickering. The 100ms flag routine TIM100() calls FLICK() to execute flicker and
 A_Reset() to execute analog reset at 100ms intervals. FLCK() causes the LED

lamp to flicker at 0.3s intervals while the flicker condition is met. A_Reset() is
called periodically from the 100ms routine and executes the following. If the tilt

sensor reset flag is set, it calls KEI_RST() to reset the tilt sensor in step . If the
rotation sensor reset flag is set, it calls SEN_RST() to reset the rotation sensor in
step . If there is no tilt/rotation reset flag, the current steering wheel position is
set as the steering wheel reference position and analog reset is complete.
KEI_RST() To find the tilt sensor correction value, it adjusts the serial DAC

output value with KEI_INC() or KEI_DEC() to bring the ADC input value to
around 1.65 [V], and when it is within that range, it turns the tilt sensor reset flag
'OFF'. The calculation of ADC input value - reference value = polarized slope value
is performed within AD_AVE() to create a value of approximately ±500 bits, and
this is then accumulated eight times to create a value of ±4000 bits.

from 0 to 102

Using an adder circuit
consisting of an op amp , Rf,
R1, and R2 in Figure 5.2, a
polarity calculation is
performed on the sensor
output and DAC output
with Vref as the reference,
and the output of the serial
 DAC is adjusted so that the
 average input value of the
ADC input terminal is near
 the center of the ADC
input range (1 .65V).

3 bits into analog-to-digital conversion.

Figure 5.2 Schematic diagram
 of automatic drift correction circuit

Notes on drift correction
 The drift amount of the angular velocity sensor used in this bicycle teaching
material can be large when the power is turned on or when the ambient
temperature changes. As explained in section 5.1.2, drift correction is performed
once when the stop button on the remote control is pressed in manual driving
mode, so if the drift amount is extremely large, it will go out of the range of ±1.65

[V] in a short time and the bicycle will not be able to run normally. The bicycle
will not stop turning despite the control from the remote control. If this happens ,
 please stand the bicycle upright again and perform drift correction. The drift
amount will stabilize once the temperature of the sensor element stabilizes.

The handlebar operation of this bicycle teaching material is configured with
automatic balancing control that tracks the deviation between the order and
feedback to zero, as shown in Figure 5.3. In addition, proportional control is also
performed, which sets the tracking speed proportional to the deviation using a
PWM motor driver. Here, we will list the names of functions related to automatic
 balancing using proportional control and explain mainly the software.

The average calculation routine AD_AVE() performs eight integrations to obtain a
 value between 0 and 8184 bits, and the reference value is subtracted from this
value to obtain polarized data of approximately ±4000 bits. SEN_RST() To find
the correction value for the rotation sensor, the serial DAC output value is
adjusted with SEN_INC() or SEN_DEC, the ADC input value is set to
approximately 1.65 [V], and the rotation sensor reset flag is set to 'OFF' when it
 enters the range. The calculation of the polarized rotation value (ADC input
value - reference value = polarized rotation value) is performed with TuenPID(),
and the value is approximately ±4000 bits.

Figure 5.3 Handle operation block diagram

The remote control sends a six
-character message starting with the
header $ shown in Figure 5.4 via
infrared communication, and in the
message is the steering angle. This
string is handled by the array
RX0_RES_BUF[] or the (1200H) buffer.
The string looks like this:

his is the header
The handle angle

Acc

Terminator

(2) Automatic steering angle order The steering angle during automatic driving is
calculated from the information from the tilt sensor, turning sensor, and speed
 sensor, as well as the steering angle information from the remote control.

5.2.1 Overview of steering wheel control
We will now provide an overview of steering wheel control
 for the automobile teaching materials shown in Figure 5.
3. (1) Manual steering wheel angle order

he 8 bits of the steering angle
byte and the upper 3 bits of the
status byte (a total of 11 bits) are
mixed in HDLangl() and the ±800
-bit (1) manual steering angle is
stored in Hndl_angle or (1034H).

h Checksum Value

S Status Byte

Exclusive OR value of A, and S

el Byte Sets the driving speed as an
8-bit binary value.

For information about the optical remote control, see section 2.6 Remote Control
 Receiver Module.

(3) Comparison calculation
Within the automatic handle AUT_HDL() or manual handle HND_HDL(),
deviation = (handle order angle) - (feedback angle) is calculated. With the
deviation as an argument, if the order angle is large, the handle jumps to the

left rotation L_side(), and if the order angle is small, the handle jumps to the
right rotation R_side(), thereby setting up proportional control.

Figure 5.4 Remote control message

status

header

(4)Motor Driver

(5)Rotary Encoder

Figure 5.5 Spee control by PWM

The hardware drives the steering
motor with a PWM-controlled H -bridge
 proportional to the deviation.

The software uses the timer's square
wave output mode as shown in Figure 5
.5 with the L_side() or R_side()
settings, drives the H-bridge with a
pulse width proportional to the
deviation, and performs proportional
control by varying the motor speed. For
information on PWM control and the H-
bridge driver, see Section 2.4.

The bicycle teaching materials use an
AB-phase incremental type rotary
encoder, whose output waveform is as
shown in Figure 5.6, to detect feedback
of the handlebar angle.

The handle angle encoder is explained
in Section 1.2.2. Please refer to it. This
encoder is built into the handle drive
motor and generates 12 pulses per
rotation. When calculated from the
motor reduction ratio, 507.7 pulses are
 generated for a handle angle of ±70°.

In this bicycle teaching material , the rotation angle is detected at the falling and
 rising edges of the A phase as shown in Figure 5.6 to further improve the

resolution, so 1015.4 pulses (±507. 7 pulses) are obtained for a handle angle of
±70°, enabling smooth handle control. Edge detection is performed by an
interrupt, and the encoder's pulse buffer Hndl_feedback or (1070H) is

incremented or decremented according to the direction at each interrupt. The
interrupt function name is as follows:

Figure 5.6 Encoder output waveform

RiseFall

5.2.3 Proportional Control
Proportional control performs mechanical control with an actuator speed
 proportional to the deviation between order and feedback, as shown in Figure 5.8.
Proportional control speeds are divided into 1) the deadband range where the
actuator does not move, 2) the proportional control range where the deviation and

speed are proportional, and 3) the control range at maximum speed. 1) Deadband,
deadband Even when proportional control is performed, a minimum deadband is

necessary. Set a deadband that ensures a stable state without fine hunting.

Figure 5.7 ON/OFF control

Figure 5.8 Proportional contro

Proportional control, such as electric servo
mechanisms and proportional solenoid valves,
 is commonly used in the mechanical control of
 industrial equipment.

There are two types of actuator drive: ON
-OFF control and proportional control. In ON -
OFF control, as shown in Figure 5.7, when
the deviation between the order and feedback

exceeds the deadband width, the actuator
turns 'ON' and moves at maximum speed in
 the direction that reduces the deviation.
When the deviation amount enters the
deadband width, the actuator turns 'OFF'.

When this ON-OFF operation is performed
 with an electric actuator, for example, the
deviation enters the deadband and the motor
 is turned 'OFF', but the motor cannot stop
immediately, so the actuator runs for a while
and then stops.

If the deadband width is narrow, there is a
possibility that it will run beyond the
 outside of the deadband on the other side, in
which case the actuator turns 'ON' again,
moves at maximum speed in the direction that
 reduces the deviation, and when the
deviation amount enters the deadband width,
the actuator turns 'OFF'.

If the dead band is set narrow with ON-OFF control, the above steps and will be
repeated, resulting in a symptom known as hunting, and the actuator will go back and
forth and will not stop.
Since the dead band cannot be made very narrow with ON-OFF control, you cannot
 expect very good stopping position accuracy.
With proportional control, the actuator decelerates in proportion to the deviation, as
 shown in Figure 5.8, so "overrunning" does not occur much and the stopping position
accuracy is good.

Control Range

Calculate the tracking direction from the deviation, and when it is
greater than the dead band width

PDead band of proportional control Dead_B, proportional control width rop_W

If there is backlash or play in the mechanical parts or a time delay in the feedback
system, problems such as hunting that does not stop or unstable stopping position
accuracy will occur, so it is important to investigate the cause. Also, even if the
actuator startup speed is set from zero, there is a high possibility that the
actuator will not move because there is not much startup torque in reality.

It is necessary to set a minimum speed at startup, such as A_min in Figure 5.8.
Proportional control range This is the region that accelerates and decelerates
 from the minimum speed to the maximum speed with a certain deviation width,
and the purpose is to smoothly start and stop the actuator. If this region is
shortened, it will be equivalent to ON-OFF control, and if it is longer, the
actuator's tracking speed will be slower. High- speed control range This is the
region where the actuator operates at high speed. The maximum speed value can
also be adjusted. The names of the proportional control functions are as follows:

5.3 Pedal control
Pedal control (vehicle speed control) is performed by remote control to control
forward and reverse, and speed control by PWM. In addition , the vehicle speed is
measured by counting pulses from the rotary encoder built into the motor, but the
encoder value is not fed back like in steering wheel control, so it is an open loop.

Calculate the following direction
 and deviation and jump

After setting the minimum speed A_min, set the timer PWM

Calculate deviation and jump

Motor rotation control

As shown above in Figure 5.4 Remote Control Message, an 8-bit speed command is
sent from the remote control.

Manual
ackward Order ASpedal()Automatic

Motor reversing

Motor moving forward

Motor moving forward

Motor reversing

The square wave output of the CPU's built-in timer is connected to the PWM
terminal of the H-bridge driver that drives the pedal motor for PWM control.

The same process is carried out for steering wheel speed control.

The 8-bit value 0 to 255 is divided into three parts,

forward (Ahead) , stop, and reverse
 (Asturn), and you can freely control

forward and backward movement using

 accelerator knob on the remote

control. The pedal is operated as follows:
theFigure 5.9

 Speed command from remote controll
The pedal order shown in
Figure 5.9 is generated based
on the current accelerator
position of the remote control.

If the pedal order is forward , depending on the current situation, it will start forward,
 stop to reverse, or maintain the current situation and only set the speed.

Motor stopped

Motor stopped

Motor forward start

Motor reversal preparation/stop

Speed setting update

Motor reverse start

Motor reversal preparation/stop

Speed setting update

When the pedal order is reverse, just like forward, you stop or maintain the current state to
 start reverse or reverse depending on the current situation, and only set the speed.

The duty ratio of the timer
square wave output can be
varied as desired by a program,
as shown in Figure 5.10.
However, even if the duty ratio
is set to its maximum, for
example, in the case of an 8- bit
timer, the duty ratio will be up
to 254/255.

In the TLCS-900 version example program, when AHrning() detects a duty of
254/255 or more during forward rotation only, the timer output is switched to the
boat output and '1' is output continuously , making it 255/255.

Figure 5.10 Timer square wave output waveform

The traveling speed of a bicycle is one of the essential elements in bicycle posture
control calculations. In this teaching material, the traveling speed is measured by
 counting the number of output pulses from the rotary encoder built into the pedal
 motor at regular intervals. For specifications of the pedal motor and rotary
encoder, refer to section 1.3 above. Pulse measurement is performed by counting
the number of pulses at 100 ms intervals in the interrupt function shown below,
and then storing the result in Pedl_encoder or Pedl_enc or (1040H) after scaling
the number of pulses x 15 to make it a convenient scale for posture control
calculations. The number of pulses after scaling is a value of approximately 450
to 1100. Pulse count interrupt function name
T LCS 900 INT0_Z()
A RM INT0_IRQHandler()

5.4 Automatic Attitude Control
The automatic attitude control of the bicycle teaching material in Figure 5.11
operates the handlebars to return the bike to its original tilt, just like when we
normally ride a bike, and also operates the same handlebars to turn in the
desired direction. In this section, we will first explain the mechanism of attitude
control, and in the next section we will explain how to develop an attitude control
 program.

Figure 5.11 Automatic attitude control bicycle teaching material

- 83 -

5.4.2 Straightness correction
The bicycle can be operated without falling over by handling the handlebars
according to equation 5.8 or 5.9, which is derived from the previous equation: tipping
force - centrifugal force - inertia force = 0.
However, errors due to offset and drift of the inclination angular velocity sensor (①
in Figure 5.11), which measures the inclination angle, an element of posture control,
accumulate, making it difficult to ride in a straight line, especially for long periods
of time.
To improve this straight-line riding ability, a turning angular velocity sensor (②) is
used to correct the error of the inclination sensor (①).
Specifically, straight-line stability is improved by correcting the inclination angle in
equation 5.12 using correction value C, which is obtained by proportional and integral
processing of the output of the ② turning angular velocity sensor calculated in equation
5.11, and calculating the steering angle.

ωTurning correction value 3 4C K K dt ･･･Equation 5.11

Handle angle
Correction value

2K
V

･･･Equation 5.12

5.4.3 Control using a remote control
The direction of travel of an automatic attitude control bicycle can be controlled as
desired using a remote control.
②The value of the turning correction value C, which is obtained by proportional
integral processing of the output of the turning angular velocity sensor, is
intentionally changed using an external remote control, and false turning
information is given to equation 5.11, resulting in the bicycle turning.
When turning, the integral term of the turning correction value is cut. If this integral
cut is not performed, straight-line stability after turning will be impaired.
The timing of this integral cut and how the accumulated error contained in the
integral value is handled have a significant effect on the riding performance of the
bicycle, and are one of the techniques in programming automatic attitude control.

5.5 Attitude control program
The automatic attitude control program explained in Section 5.4 is deployed in
CALCU().
The output values of 0 to 1023 from the 10-bit A/D conversion, which is performed
once every 0.313 ms, are accumulated eight times, and data from 0 to 8184 is
prepared once approximately every 2.5 ms, then CALCU() is executed and the
following five calculation functions are called.
When explaining the contents of the functions, the input and output variable names
are listed in the order of the TLCS-900 C version, ARM C version, and TLCS-900
ASM

5.5.1 V2_SCAL()
The actual speed pulse value Pedl_encoder or Pedal_enc or (1040H) is squared and
scaled so that the output value is approximately 40 to 1000, then output to Speed_sq
or (1052H) and used by RUDDER() to calculate the steering angle for autonomous

- 84 -

 5.5.2 TRNrate()
Calculates the average and moving average of the turning value.
The turning value input Turn_val_tmp or Turn_P_buf or (104AH) is input once every
2.5 ms. This is accumulated 12 times to obtain polarized int data once every 30 ms,
which is then put into eight ring buffers to calculate the moving average.
The moving average output of the turning angular velocity Tangle_ave or (10A4H) is
output once every 30 ms and is used within TurnPID() to determine the limit of the
steering angle.

5.5.3 TurnPID()
To improve the straight-line stability of the bicycle, the lean angle error shown in
Equation 5.12 is corrected using the correction value Equation 5.11.
The output of the proportional term of the correction value is Turn_Val or
Turn_P_calc or (1046H).
The output of the integral term of the correction value is Turn_I_calc or (104EH).
When integration is used, the integration value limit and reset timing are difficult
elements.
In the current program, turning integration is stopped while turning.
The integration limit is set to a maximum limit of ±1000000 bits within K_max().
To prevent the sensor drift value from accumulating, one bit is subtracted once every
2.5 ms.
Although we are taking the above measures, we believe that the current situation is
not optimal.

ωTurning correction value 3 4C K K dt ･･･Equation 5.11

Handle angle
Correction value

2K
V

･･･Equation 5.12

To control the bicycle using a remote control, the value of K3 in Equation 5.11, the
turning compensation value, is intentionally changed by the handlebar angle on the
remote control.
When the bicycle is in automatic driving mode, a dead band of ±200 bits is set around
the center of the handlebar angle on the remote control to distinguish between
turning and going straight.
Within ±200 bits, the bicycle will go straight, and any handlebar angle greater than
this will cause the bicycle to jump to LtrnODR() or RtrnODR
() and enter turning mode, where the bicycle will start turning in the desired
direction.
If the turning compensation value is changed significantly all at once from the remote
control, the bicycle will fall over, so a limit is set so that the change value is no more
than 50 bits in LtrnLIM() or RtrnLIM() once every 0.5 seconds.

5.4.4 KsyaPID

In the above section 5.4.1,
2

K
V

･･･formula 5.9 is explained as PID processing,

but there is no specific program that performs PID calculations.
We will explain the actual state of PID processing of the lean angle of this bicycle.
As explained above in Section 2.1, the angular velocity sensor section, and Figure 2.3,
Sensor output waveform, the lean angle sensor of this bicycle has an output

- 85 -

waveform that is somewhere between that of an angular velocity sensor and an
angular acceleration sensor, so if we think of it as an inclination angle sensor, the
A/D converted output of the lean angle sensor, AD2_out_slope, AIN5_auto, or
(102CH), is close to the differential value D of the lean angle.
Also, since Equation 5.11 is the differential value of the actual amount of turning
resulting from the handlebar angle calculated from the differential value of the lean
angle, , it is a proportional action in terms of dimensions, and can be thought of as
an integral action.
When we first began developing this bicycle, we tried differentiating and integrating
the lean angle, and then integrating it twice, and we arrived at this conclusion
through trial and error.
KsyaPID() adds the above differential, proportional, and integral values, adjusts the
span, and passes it to RUDDER() as the correction value Slope_Val or (1048H), which
is the numerator term in equation 5.12.

5.5.5 RUDDER(）

Handle angle
Correction value

2K
V

･･･Equation 5.12

A calculation is performed and proportional control of the steering angle is performed
based on the deviation of (steering wheel angle - steering wheel feedback).

Chapter 6 Using the Debugging Function

Recording starts with the remote control UP button (LED: ON)

6.1 Overview of how to record driving data

Recording stops with the DOWN button on the remote control (LED: OFF)
Recording interval: Approximately every 100 msec
Recording capacity: Approximately 1 minute
Recorded data : Steering wheel operation amount
Recorded data : Incline value during automatic operation

Photo 6.1 UP/DOWN button switch

You can use the debug function of the bicycle teaching material to record driving
data during automatic driving. Normally, you can check the memory etc. with the
debug tool connected, but you cannot continue to ride the bicycle with the tool
connected. Therefore, you can temporarily record the driving data while driving to
 the memory, and then connect the tool after stopping the driving to view the
recorded driving data. We will introduce how to record driving data using the
sample program on the included CD.

The remote control sends commands to start and stop recording to the bicycle while
 it is in automatic operation. The red and green buttons on the remote control have
already been assigned functions, so use the buttons under the cover. To remove the

 cover, remove the two screws at the top of the back side (Photo 6.1). Then, lift the
top cover on the front side and it can be easily removed. Of the four buttons under
 the cover, the UP button starts recording and the DOWN button stops recording.
The UP and DOWN buttons are used for the dump function on the remote control
board, but do not affect the signals sent to the vehicle.

 Refer to the "Setup (ARM version)" manual on the included CD and follow the
 steps up to "3.5 Writing and Debugging Executable Files." Leave the sample
program written to the vehicle. 2. Write the variables for recording. Open the file
"ramed.h" and add four variables by referring to image 6.1.

Image 6.1 Adding variables (ARM)

Image 6.2 Flag control (ARM)

 Write a program for recording.
Open the file "main.c" and write flag control in the DOWN command in the function

 'RC_Sbit()' and in the UP command (Image 6.2). The DOWN command turns the flag
OFF, and the UP command turns the flag ON and the LED on the car body ON.

 Write a call to the recording flag check function 'REC_CHECK()' in the
 function 'TIM10()' (Image 6.3). The function called in the function 'TIM10()' is
executed every 10 msec.

Image 6.310ms call (ARM)

 Write the functions 'REC_START()', 'REC_STOP()', and 'REC_CHECK()'
 below the comments for the 10msec routine processing (Image 6.4).

The function 'REC_START()' stores data every 100 msec.
AIN5_auto stored in the variable LOG_SLOPE[] is the slope value data during
autonomous driving.
Hndl_val stored in LOG_HNDLE_VAL[] is the steering wheel operation amount
data.

Image 6.4 Recording control (ARM)

Data is stored approximately every 100 msec, up to 600 items, allowing one
minute of data to be recorded. If recording is stopped with the DOWN button
before one minute has elapsed, the data recorded up to the point at which it was
stopped will be retained, and when recording is resumed, data will be stored from
the point where it was stopped. After one minute has elapsed, the flag will
automatically be turned OFF and recording will stop. If recording is started again,
 the oldest data will be overwritten.

After writing the above program, rebuild everything and check that there are no
 errors. If there are no errors, connect the vehicle and the debug tool, download and
 debug.

Check that the program is working properly on the debug screen. Display the

 live watch and register the four variables you added this time (Image 6.5). Press
the UP button while the program is running to start recording. Use the handle
volume on the remote control to change the value to be stored. Press the + button
next to LOG_HNDLE_VAL[] to check the value. Press the DOWN button to stop
storage and confirm that the LED on the car body turns off. Also, confirm that
Log_cnt increases while recording and Rec_flag is 1.

8. Once you have confirmed that the program is working properly, prepare the
recorded data so that it can be easily handled. Select Break from the Debug
screen to pause the program.

Display Watch 1 and 2 from the Display tab, and register LOG_HNDLE_VAL to
Watch 1 and LOG_SLOPE to Watch 2 (Image 6.6) (Image 6.7).

Image 6.5 Live Watch

Once registration is complete, stop debugging, turn off the power, and remove the
tool. 9. Acquire data during automatic driving. Refer to the driving instruction
video and perform automatic driving. Pressing the UP button just before driving
will ensure reliable data recording. 10. After automatic driving has stopped, press
the DOWN button to stop recording. Please note that the recorded values will
be erased if the vehicle's power is turned off.

 From the Project Options, select the Debugger Settings tab and uncheck Run to
 specified location (Image 6.8).

Image 6.8 Debugging settings

Figure 6.6 Watch display Image 6.7 Watch Registration

Next, select the Download Debugger tab from the project options and check Attach

 to program (Image 6.9). Checking the above allows you to debug without resetting
 the target. After changing the options, rebuild everything.

Image 6.9 Debug setting 2

Right-click on the Watch 1 screen and select Save to file (Image 6.11).

Image 6.11 Log save 1

)Graph 6.1 Driving record (ARM)

Similarly, save the Watch 2 screen.

You can save it anywhere you like (Image 6.12).
If you have not taken a record, please refer to .

Image 6.12 Log save 2

The saved log file can be edited using Excel etc. The acquired driving data is
 shown in Graph 6.1. This graph shows data every 100msec, but you can change
the program to every 10msec or add turning values, pedal speed, etc. to the
acquired data.

 If no record is taken, please check steps to again. If no record is taken
 after checking, the vehicle board may have been reset. If you are using a J-TAG
tool compatible with J-LINK, the target may be reset when connected.

Press the UP button, then press the DOWN button, and the LED on the vehicle
will go off. If the LED goes on after connecting the debug tool with the LED off,
the vehicle board has been reset.

After connecting the debug tool to the PC, wait until it is recognized by the PC
 before connecting it to the vehicle.

Please take the following measures:

If you are using a USB extension cable for your debugging tool, remove it.
Replace the vehicle battery with a new one.

If the reset still occurs after trying the above, please use IAR's J-TAG tool I-JET or
 similar.

Assembly file output settings
Open the relevant workspace and open the project options. Next, select the List
tab in the C/C++ Compiler item. When you open the relevant tab, the screen below
 will be displayed. Currently, the "List file output" box is not checked so that the
assembly file is not output. If you want to output an assembly file, please set it as
shown below.

Image 6.13: Project Options List Screen

Next, select the List tab for the Assembler item. When you open the tab, the
following screen will be displayed. Currently, the "List file output" box is
unchecked so that the assembly file is not output. To output the assembly file, see
Image 6.14 on the next page.

Check the box for the assembly file output setting, click OK, and then rebuild. If
there are no errors, the assembly file will be output to the List folder in the Debug
folder where the project is saved, as shown in Image 6.15 Assembly File Status.

Image 6.14 Assembly file output settings

Image 6.15 Assembly file status

If you open the above file in a text editor such as Notepad, you can see the
program written in assembly language.

6.3 TLCS-900 version debugging procedure
 Refer to the manual "Setup (TLCS Edition)" on the included CD and execute up

to "3.5 Writing the Executable File". Leave the sample program written to the
vehicle. Write the variables for recording. Open the file "ramed.h" and add eight
 variables referring to image 6.16.

Image 6.17 Flag control (900)

 Write a program for recording.

Open the file "C_JTN.c" and write flag control in the control functions RC_DN()
 and RC_UP() for the remote control's DOWN command and UP command (Image
 6.17). The DOWN command turns the flag OFF and turns off the LED, and the
UP command turns the flag ON and turns on the car body's LED. Also, comment
out the integral enable flag.

Image 6.16 Adding variables (900)

The function 'REC_START()' stores data every 100 msec. AD2_out_slope stored in
the variable LOG_SLOPE[] is the slope value data during automatic driving.
Hangle_buf stored in LOG_HNDLE_VAL[] is the handlebar operation amount
data. Data is stored approximately every 100 msec, up to 600 items, so data can be
 recorded for one minute. If recording is stopped with the DOWN button switch
before one minute has elapsed, the data recorded up to the point at which it was
stopped will be retained, and when recording is resumed, data will be stored from
the continuation. After one minute has elapsed, the flag will automatically be
turned OFF and recording will stop. If recording is started again, the oldest data
will be overwritten.

Describe the conditions for displaying the
 data recording results. Press the UP button on
 the vehicle body board to display the
handlebar recording value, and press the DN
button on the vehicle body board to display the
 tilt recording value (Photo 6.2).
Modify the sample program's dump function to
 include a flag for recording data (Image 6.20).

 Comment out the DUMP() call and the
M_POINT change from the sample program.
Also, pressing the same button while each
result is being displayed will stop the display
of the records. Photo 6.2 Body UP DN button SW

 Write a call to the recording flag check function 'RESULT_DISP()' in the

 function 'TIM 100()' (Image 6.21). The function called in the function 'TIM100()'
is executed every 100 msec.

Image 6.20 Result display control

 Write the functions 'RESULT_SLOPE()', 'RESULT_HNDL()', and
 'RESULT_DISP()' below the comment for the 100msec timer processing (Image 6.
22). The function 'RESULT_DISP()' judges the flags set by the UP and DN buttons
 on the vehicle board every 100msec. At each call destination, the address of the

array is stored in M_POINT. The function 'DUMP()' immediately afterwards
displays the stored results on the screen. After the results have been displayed 600
 times, the flag is cleared and the display of the results is stopped.

After writing the above program, run the build and check that there are no
errors. A warning message may appear, but this will not affect the operation
(Image 6. 23).

Image 6.21 100msec call

Image 6.22 Result display control

Image 6.23 Build result

 If there are no errors, connect the vehicle to the debug tool, start FD23Boot.
exe, and write the program. Use FD23Boot as is to check that it is working
properly. After resetting the vehicle, press the UP button on the vehicle's board
to display the recording results. Since no command to start recording was issued
 from the remote control, the displayed result is "00" in hexadecimal (Image 6 .

24).

In this case, the displayed results are read as follows: the first "100C" is the
variable address (the address may not be "100C"; see).
 The first "00" after that is the storage result of the first address "100C", followed
 by "100D", "100E", and so on. Also, the variable LOG_HNDLE_VAL[] displayed
here is of type int, so it is expressed in 2 bytes. Therefore, it is read as the
concatenated value of "100D" and "100C". 32 bytes are displayed per line, but to
take into account the work of creating a graph, the next line is displayed starting
from the address 2 bytes away.

Image 6.24 How to read the results

Check the starting address of the variable LOG_HNDLE_VAL[]. Open the
 map
 file "IDE_C.map" output by the compiler. If you are using an IDE environment,

 the map file is located in the debug folder in the project folder (Image 6.25).
Search for LOG_HNDLE_VAL in the map file and check the address. In Image
6.26, you can see that the address is "100C". Also, the starting address of
LOG_SLOPE is "14BC". Press the DN button switch on the vehicle board to
check that debugging starts from "14BC".

 Once you have confirmed that the displayed addresses and variables are
 correct, reset the vehicle and check that the values have been stored. Press
the UP button on the remote control to start recording, and operate the
handlebar volume for a
while. After a certain period of time, press the DOWN button on the remote

 control to stop recording. At this time, make sure that the LED lamp goes out.
Press the UP button on the vehicle to display the recording results and confirm
that the value has changed (Image 6.27).

Edit the data to confirm the displayed values as numbers. This time, we are us-
ing
 Microsoft Excel 2010. Select the recorded value from the top and copy it (Image 6
.28). Open Excel and paste the copied value. Select Delimiter from the Data tab to
 launch the Delimiter Wizard. Set it to separate by space (Image 6.29). Select Next,
 and in the Select Data Format for the Separated Column, select the first two in
 the
 data preview and set it to text format. Select Finish to check the data (Image 6
.30).
 Erase the data after separation, leaving only the address cell column and the first
 data cell column.

As shown in image 6.31, convert the recorded data in column B to a signed decimal
number.
First, swap the two bytes before and after the recorded data. Convert the swapped re-
sult from hexadecimal to decimal and display the result in column C. The data con-
verted to decimal is of signed int type, so if the value exceeds 3 2767, the maximum
value on the positive side, subtract 65536 to convert it to
a signed decimal number. The converted result is in column D.
- Input formula for cell C3: =HEX2DEC(RIGHT(B3,2)&LEFT(B3,2))
- Input formula for cell D3: =IF(C3>=32767,C3-65536,C3)
You can confirm that column D is a signed decimal number from the address
 value "103C".
LOG_SLOPE is also of signed int type, so you can handle it in the same way.
After confirming the operation, turn off the power to the vehicle and remove
 the debug tool.

 Acquire data during automatic driving. Refer to the driving instruction video
 and

After automatic operation has stopped, press the DOWN button on the remote
 control to stop recording. Please note that if you turn off the power to the vehicle,
 the recorded values will be erased.

Connect the debug tool to the vehicle and start FD23Boot. Press the UP button
 on the vehicle board to display the recorded data in LOG_HNDLE_VAL. Refer to

 to prepare a signed decimal number. Once the handlebar value has been
converted, clear the display on FD23Boot. Press the DN button on the vehicle
board to display the recorded data in LOG_SLOPE, and convert it to signed
decimal data in the same

You can create a graph using the prepared signed decimal data (Graph 6.2).
 This graph shows data for approximately 100msec intervals, but you can
change the program to change it to every 10msec, or add turning values, pedal
speed, etc. to the data you obtain.

Graph 6.2 Driving record (900)

7.1 What is an automatic attitude control bicycle?

Figure 7.2

Combined center of gravity

Center of gravity mark

(2) Moving the fulcrum

To keep a bicycle from falling over, you only need to consider left -right balance,

not front-to-back balance like with a unicycle. (Figure 7.4, left) If the bicycle leans
to the left or right, balance can be maintained by constantly keeping the fulcrum
under the bicycle's shifting center of gravity. With a bicycle, the fulcrum is not a

single point, but a support line connecting the two wheels. (Figure 7.3, center)

So how do we move the fulcrum (support line)? First, when the tilt sensor detects
 the direction (right or left) and the degree of tilt, it quickly turns the handlebars
in the direction of the tilt. Of course, just turning the handlebars is not enough;
you can move the support line by stepping on the pedals and moving the bicycle
forward. And it has to get closer to the support line faster than the speed of the
tilt (the speed at which the center of gravity moves away from the support line).
In the same way, the support line will move quickly to balance out the next
change in tilt.

Cooking chopsticks

Figure 7.4

Carrier

Figure 7.5

Geared motor

7.5 Components
(1) Batteries: Four AAA batteries make the bike's heaviest part. The center of
gravity is raised by placing it in the same position as the heaviest person on a real
 bicycle

This is a key control part, and since it rotates reversibly, we need to consider an
installation method that will prevent backlash. Initially, we used a servo used in
 hobby radio-controlled cars (Photo 7.2). The reason for this is that: 1) the unit

has a built-in gear reduction device. 2) there is a potentiometer directly connected
 to the output shaft inside, which can be used as feedback for control. (The
existing amplifier is not used.) 3) a gear can be machined and attached to the

output shaft, allowing the handle shaft to be driven via the gear. 4) a bearing is
inserted in the output shaft, so there is little backlash.

As in the example in the previous section, heavy objects are elevated to
make lateral movement easier.

When building such a
prototype, using a radio-controlled servo is one practical option. Toy
manufacturers also use radio-controlled servos in their prototyping.

Photo 7.5

Potentiometer

I removed the potentiometer and cut off the stopper on the output shaft gear so
that it would rotate in one direction.

(5) Control Board

Thin (2, 3 mm) wooden board
Easy to process. Screws or wood screws are used to attach parts.

Aluminum plate (0.5 to 2 mm)
Easy to bend and drill holes. Also used for wheels.

Stainless steel pipe (inner diameter 2.1, outer diameter 2.5 / inner diameter 3.0
, outer diameter 4.0)
Cut and use for front forks and tubes.

Brass plate (0.25, 0.8 mm: used for shims)
Used in areas that require precision and strength. Joined with silver solder. Silver
solder can also be used to join other metals besides aluminum.

ABS resin plate (plastic plate 1.0, 1.5, 2.0 mm thick)
Easy to cut and bend, and uses a special adhesive.

Plastic Gear
Even if you use the reduction gear inside the servo, the torque transmission
 between the output shaft of the servo and the drive shaft of the handle, etc. will
ultimately be done by gears. Normally, for this size, a plug gear with module 0.5
is used. If the module is 0.5, any manufacturer's gears can be combined. The
combination used here is a spur gear, but there is also a worm gear. The
reduction ratio can be 1:10 or more, but the transmission efficiency is poor and
the torque generating axis of the worm and the mating axis are perpendicular,
making the bearing structure difficult. This combination of spur gears also seems
to be good for a reduction ratio of up to 1 :5 per pair. Since the final reduction ratio
 from the motor to the drive shaft is 1:64 to 1 :150, a combination of 3 to 4 stages
can be used. If the reduction ratio of one pair is increased, the distance between
the two parallel shafts will also increase, and one of the spur gears will become
larger, making it difficult to work on the frame or wall where the bearings are
located. Regarding the bearings for the gear shaft, if the plate thickness (in the

case of brass) is 0.3 mm or more, it is fine to just drill a hole (1 to 2 mm), but
when it comes to the output shaft of the final stage, the shaft diameter becomes
thicker and a force is applied in the thrust direction . If the plate thickness is 0.8
mm or more or is a thin plate, the shaft should be supported by a metal bearing
or bearing.

Stepped Collar Flanged bearing

Figure 7.9

 INDEX

 -121-

A
Addition Circuit ··· 2.3.2・2.3.3・5.1.1
Addressing ·· 3.1.1(2)
AHB/APB ·· 3.2.4(10)
Angular Rate Sensor ··· 2.1・2.3.3・5.1.1・5.1.3
ARM architecture ··· 3.2
ARM debug ·· 3.3・3.3.4
ARM register ··· 3.2.4(1)
Automatic Balancing ··· 5.2
A/D conversion ··· 2.8・5.1.1・Give it a try2.4

B
Bank Register ·· 3.1.2(6)
Brushed DC Motor column ··· 2.1

C

Cast ·· 4.3.3
Caster ··· 1.1.1
Centrifugal force ·· 5.4.1
CISC ··· 3.1.1(5)
CMSIS ·· column3.4
Control Register ··· 5.1.2(5)

D
Dead Zone ··· 5.2.3
DMA ··· 3.1.2(5)
Drift Compensation ·· 2.1.1・2.2・2.3.3・5.1
Duty Ratio ··· 2.4.1・2.4.2・5.3.2・Give it a try2.3
D/A conversion ··· 2.2・2.8・Give it a try2.4

E
ETM ··· 3.3.3

F
Falling force··· 5.4.1
Fetch ·· 3.1.1(1)
Flag Register ··· 3.1.2(2)
Flash type A/D conversion ··· 2.8.2(2)
Follower Circuit ··· 2.3.2・2.3.3・Give it a try2.7

 -122-

G
H

Handle Encoder ·· 5.2.1(5)・1.2.1
Handle motor ··· 7.3・7.5(2)・Give it a try2.3
H bridge ·· 2.4.2・5.2.1(4)

Ｉ
Inertial force ·· 5.4.1
Interrupt (TLCS-900) ·· 3.1.3・4.2.1(1)・column3.1
Interrupts (ARM) ··· 3.2.4(1)・4.2.1(4)
Inverting amplifier circuit·· 2.3.2・2.3.3・Give it a try2.2

J

JTAG ·· 3.3.2
K
L
M

MIPS ·· column3.2
Multitasking ·· 4.1.2
Multiplexer ·· column2.4

N
NVIC ·· 3.2.4(1)

O
ON-OFF ·· control 5.2.2
Optical receiver module ··· 2.6.1・2.6.2・2.6.3・Give it a try2.6

P
Pedal Control ··· 5.3
Pedal motor ··· 1.3・7.5(3)
Program Counter ·· 3.1.2(4)
Proportional Control ··· 5.2.1(3)・5.2.2・5.2.3
PWM control ·· 2.4.1・2.4.2・5.2.1(4)・5.3.2・Give it a try2.3

Q
R

Rail-to-Rail Op Amps ·· 2.3.1
Remote control transmission ·· 2.6.3

 -123-

Resistor string method ·· 2.8.1(1)
RISC ··· 3.1.1(2)・column3.3
R-2R Ladder Method ··· 2.8.3(1)・Give it a try2.4

S
Sample and Hold ·· column2.3
Serial DAC ·· 2.2・2.3.3・5.1.1
Single Tasking ··· 4.1.1
Stack Pointer ··· 3.1.2(2)
Starting Torque ·· column2.1
Status Register ·· 3.1.2(2)
Steering wheel control ··· 5.2
Successive conversion method ······································ 2.8.3(2)
SWD ··· 3.3.1・3.3.2
SWV ··· 3.3.3

T
Three-Terminal Regulator ··· 2.7
TLCS-900 architecture ·· 3.1
TLCS-900 register ·· 3.1.2
Trail ··· 1.1.1

U
V

Vector Table ·· 4.2.1(1)
Virtual Ground··· 2.3.3・Give it a try2.1

W

Wheelbase ··· 1.1.1・7.1

X
Y
Z

