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Chapter 1 About the vehicle body
1.1 Vehicle structure

1.1.1 Caster angle/trail/offset

The front wheel of the bicycle has caster angle, trail, 
and There are three elements of offset, and each element 
is Together, they affect driving performance. Figure 1.1

caster angle：This is the angle of inclination of the front wheel fork. Increasing the caster angle
also increases the trail.
trail :The distance between the grounding point of the wheel and the point where the extension
line of the handle fork axis intersects with the ground. It is said that the longer the trail, the better
the running stability and the more hands-off driving becomes possible.
offset .Distance between handle fork axis and wheel axis. Due to the relationship between the offset
and the caster angle, a force is generated that tries to return the handle toward the center.

If you search the internet or literature, you will find many explanations about the three 
elements of the handle. However, the handlebar of this bicycle is operated electrically, 
so stability and restorability are not required.
On the other hand, if there is a trail, the moment you move the handle electrically, 
the handle fork axis will move left and right, causing vibrations in the bike, so this bicycle
has a trail distance of zero. In other words, the extension line of the handle fork axis is the
grounding point of the front wheel. Trail = 0 is an important item when designing a bicycle 
whose handlebars are operated electrically.
1.1.2 Wheelbase

The distance between the front and rear axles is 
called the wheelbase. Figure 1.2
Wheelbase, steering angle and turning angle
The relationship is as shown in equation 1.1.

 

 

Kturning angleoffset

caster angle

wheelbase

Figure 1.2

offset
caster angle

trail

Figure 1.1

handle angle
Wheelbase

・・・Equation 1.1

In other words, the shorter the wheelbase, 
the better the steering will be.If the wheelbase 
is lon g, such as a tandem two-seater bicycle, 
the bicycle will not be able to turn easily.
Also,since a long wheelbase results in poor 
maneuve rability,the speed at which the setting
wheel can be moved (steering speed)is also 
rewuired. 
 
 
 
 
 
 
 
 
 

The front wheel od the bicycle has caster angle,trail,
and There are three elements of offset,and each element
is Together,they affect driving performance.Figure 1.1 
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ます。

1.1.3 center of gravity
The higher the bicycle's center of gravity is, the longer the natural period of sway will be,
resulting in more stable riding.
Natural period of shaking ...Equation 1.2

h is the height from the ground to the center of gravity

When making a bicycle body by hand, if the wheels and frame of the body are made of material 
with a high specific gravity, the entire body will feel heavy, and you cannot expect it to 
ride very well.

summary
The design points of electric bicycles are
.trail. 0 .short wheelbase .center of gravity is high

.Let's try 1.1
As shown in Photo 1.1, by attaching a 30cm ruler to the battery
case in a Yajirobee shape to raise the center of gravity and 
giving it the Yajirobee effect, the bicycle's running.characteristics
change.
I think it would be interesting to try using weights other than
a ruler.
It is also possible to add a flight wheel to this position to control
the rotation speed, as in a more advanced version of the
 ``Murata Seisaku-kun.''

The current board only controls the steering wheel and pedals, but it is also possible to prepare
a board that can also control a third actuator. (The shape is slightly different.)
Note 1: The metal electrodes are exposed on top of the battery case, so placing conductor weights
directly on top of the battery case will cause a short circuit in the battery, which is dangerous. 
Please insulate.

1.2 handle motor

1.2.1 Handle motor specifications

The handlebars of automatic posture control 
bicycles are operated by a DC brushed motor 
(Photo 1-2) with a built-in gear head and 
incremental encoder manufactured by Citizen 
Micro Co., Ltd. Motor specifications are shown 
in Table 1.1, Table 1.2, and Figure 1.3.

=2 hT
g

photograph 1.1

photograph 1.2

g

sys2
四角形

sys2
四角形
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Model IG-10GM-PW1705A-06 Reduction ratio 1/64
Rated voltage 6〔V〕 Rated current 125〔mA〕or less

Output shaft 163±28〔rpm〕 Output shaft 7.35〔mN･m〕
rotation torque
No-load rotation 203±30〔rpm〕 No load current 90〔mA〕or less

speed
Table 1.1 Motor part specifications

Number of pulses 12 [P/R] 12 pulses per motor rotation
maximum response frequency 20KHz
output channel 90° phase A phase/B phase voltage output
power supply DC3[V]to DC24[V]Current consumption10[mA] or less

Table 1.2 Incremental encoder section specifications

1.2.2 Relationship between handle angle and encoder
The handlebars of automatic posture control bicycles can move approximately 70°
left and right, for a total of 140°.
The handle and handle motor are connected with a gear ratio of 20:34, so the rotation

angle of the handle angle motor is（70°＋ 70°）× =238°

The encoder outputs 12 pulses per motor rotation, so the encoder pulses for a

steering wheel angle of 140° are 12× 64× ＝ 507.7pulse

Figure 1.4 is the encoder output waveform of the handle motor.In order to improve the
encoder resolution, this bicycle's control program samples the B-phase rotation angle
at the rising and falling edges of the A-phase encoder pulse, and obtains twice the
normal count value.Using ± 507.7 counts for a handle angle of ± 70°, handle angle

20
34

238
360

gear ratio
Number of pulses per motor rotation

cable motor

connector

Vcc

GND

CN5

motor

motor M1

2

3

4

5

6

Motor output shaft rotation rate

A phase

B phase

Figure 1.3 Handle motor cable connection
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control with a minimum angle of 0.14° is possible.

◇ Let's try 1.12
Let's observe the output waveform of an incremental encoder to understand how it
works.
Things to prepare: Automatic posture control bicycle, remote control, oscilloscope
(one that can stop the image), 2 oscilloscope probes
Observation method: Observe the waveform between Pin 3 (A phase) and Pin 4 (B
phase) of the handle motor connector CN4 and GND. The vertical axis of the
oscilloscope measures 2V/div, the horizontal axis measures 2ms/div, and a normal
single trigger. Turn on the power to the bicycle and remote control, and perform the
work in the following order.

Observation method: Observe the waveform between
Pin 3 (A phase) and Pin 4 (B phase) of the handle
motor connector CN4 and GND. The vertical axis of
the oscilloscope measures 2V/div, the horizontal axis
measures 2ms/div, and a normal single trigger.
Turn on the power to the bicycle and remote control,
and perform the work in the following order. ①
Connect the ground leads of the two probes to the
GND check pin on the board using pin clips. Photo 1.3
② Remove the hooks and tips of the two probes and
touch pins 3 and 4 of CN4 directly with the probe
contacts. Photo 1.3③Use the remote control to move
the handle slightly to the left or right and observe the
A-phase and B-phase waveforms at the same time.
Photo 1.4

Note: Divide the work among multiple people: the person holding the probe, the
person operating the remote control, and the person operating the oscilloscope.④
Operate the handle left and right to observe the waveforms of phase A and phase B.As
shown in Figure 1.5, when steering to the left, phase A lags, when steering to the
right, phase A advances, and as the steering speed increases, the frequency of the
output wave increases.

rising edge Falling edge

Figure 1.4 Encoder output waveform

A phase

B phase

Photo 1.4

Photo 1.3
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A phase   
 
 

B phase  
left steering right steering 

 
Figure 1.5 Encoder output phase waveform 

 
 

1.3Pedal motor specifications and driving performance 

Automatic posture control bicycle pedal motorDong Hui 

motor Industrial co.,Ltd(Built-in gear head and 

incremental encoder made in ChinaDCBrushed motor 

(photo)1.5)is. Show motor and encoder specifications1.3 

Figure the connection diagram1.4It is shown in . 
 

photograph1.5 Comes with brush for brushDCMotor  
 mold  GM12-N20VA-09220-150-EN Reduction ratio 1/150  
 Rated voltage 6〔V〕 Rated current 120〔mA〕 
 Rated rotation speed 11700 [rpm] Motor rotation Motor shaft torque 2.5 [g･cm] 
 No-load rotation speed 15000〔rpm〕 No load current 28 [mA] 
 Encoder pulse 3〔P/R〕 Output channel 90° phase A phase B phase 
 Encoder power supply 3.5 [V] ~ 20 [V] Power current 5 [mA] ~ 10 [mA]   

table1.3Pedal motor/encoder specifications  
 
 

Other numbers regarding the running performance of bicycles are as follows. Rear 
wheel external size: 75mm 
Motor output shaft pulley diameter: 22mm  
Rear wheel side pulley diameter: 20mm  
75 when the rear wheel rotates oncemm×π≒235mmThe vehicle moves forward. In order 
for the rear wheel to rotate once, the motor must 
 
20

150136
22

　  It rotates and the encoder pulse outputs 409 pulses. 

When the bicycle travels 1m 409pulse
1000mm=1741

235mm
 A pulse is detected. 

 
Since the pedal motor is designed for forward movement only, the encoder uses only the A phase to 
calculate speed.  
This vehicle speedVThe number of pulses proportional to the handle angle μ for automatic attitude 
control is calculated as shown in equation 1.4. 
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2
tan=K
V

･･･formula 1.4 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1.4Anti-vibration measures 
 
Automatic posture control bicycle has photo sensors that detect tilting and turning1.6 It is installed on the 
control board as shown in the figure. 
This sensor is easily affected by vibrations transmitted by wheels and motors, and vibrations become 
electrical noise, which causes large errors in attitude control calculations. 
 
However, if you increase the amount of vibration isolating material to an extreme in order to eliminate 
vibrations, there will be a time delay in the sensor's response to actual tilting or turning, making it impossible 
to control the attitude. 
 
For this bicycle, the entire control board with the sensor installed is photographed.1.7It is lifted from the car 
body using alpha gel vibration damping material with double-sided tape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                Photo 1.6 Sensor                                                    Photo 1.7 α gel vibration isolation material 
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図1.6 ペダルモーター・エンコーダー接続図figure1.6 Pedal motor/encoder connection diagram 
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Chapter 2 Board mounted devices/hardware 
 
2.1angular velocity sensor 
 
2.1.1Principles, usage, and problems of vibration type angular velocity sensors 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Absolute angle 
ofEarth Sesame 
 

 
 
The Murata Manufacturing Co., Ltd. angular velocity sensor 
(ENC-03 R□-R) used this time is a vibration type angular 
velocity sensor. 
 
Vibrating bodies, pendulums (Foucault's pendulum), 
spinning tops (mechanical gyro), etc. try to maintain their 
current absolute angles. For example, as shown in Figure  
 

2.1, when a globe placed on the earth is viewed from space, the axis of the top remains in the 
same direction regardless of the rotation of the earth, but when viewed from the earth's 
coordinates, the top's axis changes by the angle of rotation. The axis is moving. This is a 
gyroscope. 
In the case of a vibrating gyro, which operates on a principle similar to Foucault's pendulum, the 
piezoelectric vibrating body tries to maintain its current absolute angle, but when an external 
force with an angular velocity is applied to it, a Coriolis force proportional to the angular velocity 
acts. Masu. A vibration-type angular velocity sensor is a sensor that generates a voltage 
proportional to this Coriolis force. 
 
However, the output signal of this angular velocity sensor is Drifts affected by temperature 
changes are large Also vibrates the sensor30kHzContains a lot of noise before and afterTherefore, 
some ingenuity is required in order to use the angular velocity signal output from the sensor. 
 
Idea ① Low pass filter 
 
Amplify the sensor signalOPAmplifier (schematic diagram)OP02·OP03)On the negative feedback 
side1000pFA capacitor applies feedback to suppress the amplification of high frequencies, 
creating a low-pass filter. 
 
Idea ② Automatic drift correction 
 
Tilt angular velocity sensor signalOPAmplifier (schematic diagram)OP01·OP02·OP03)DC analog 
amplification is performed by several hundred times. 
In order to correct the drift of the angular velocity sensor in this DC amplification, the serial 
inputDAC (Digital to analog converter)IC2usingCPUThe analog input (P51/AN1)The center of 
the signal is within the analog input range (0V〜3.3V)Near the center of (1.65V)so that it 
becomesCPUOutput the correction value from the program from the side.OP02ofFourAnalog 
addition is performed at pin No. 3 to cancel the drift. 
 
Related pages:『2.2serialDAC” 『5.1.Initialization of analog values” 
 
 
 
2.1.2Output characteristics of vibration type angular velocity sensor 
 
Vibration type angular velocity sensor (ENC-03□-R)Photograph the outline of2.1Shown below. 
This sensor is2To reduce interference between each sensor assuming that it will be used in an 
axis2Two oscillation frequencies are available. 
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 mold given name Oscillation frequency 

  ENC-03RC-R 30.8kHz 

  ENC-03RD-R 32.2kHz 

 
Next, we will explain the rotation angle and analog output of this angular velocity sensor. Diagram on 
angular velocity sensor2.2Diagram when giving a rotation angle like2.3You will get a sensor output 
like this. 
 
 
 
 
 
 
 
 
 
 
 
Photo 2.1 Angular velocity ensor 
 

 
As shown in ① in Figure 2.3, perform constant angular 
velocity movement up to a rotation angle of 180°, then 
stop for a certain period of time, perform constant angular 
velocity movement in the opposite direction with a rotation 
angle of 360°, and after stopping for a certain period of 
time, return to the original position at a rotation angle of 
180°. It returns with constant angular velocity motion. 
 
At this time, the angular velocity is ② and the angular 
acceleration is ③, but the analog output of the ④ sensor 
has a waveform that is halfway between the angular 
velocity and angular acceleration. 
This sensor's analog output saturates when constant angular 
velocity motion continues (1 to 2 seconds), so it is not 
suitable as a control sensor for large bicycles (such as 26-
inch models) that have a slow inherent shaking cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure 2.2 Sensor rotation direction 

 
 

+180 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time  
 
 
 
Figure 2.3 Sensor output waveform 
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◇ Let's try 2.1 Let's check the characteristics of the angular rate sensor in the order shown 
below. In the case of tilt sensors, the OP amplifier 3 output pin 1 is the easiest point to see. 
 
(1) Turn on the bicycle and remote control and warm up for about 10 minutes.  
(2) Press the stop button switch on the remote control to perform automatic drift compensation.  
(3) After the flicker stop of the L1 lamp, apply the oscilloscope probe contact directly between 
Pin 1 and GND of OP amplifier 3 and observe the output wave while rocking the bicycle. At 
this time, care must be taken to ensure that the probe contact does not deviate from the first 
pin of the OP3. If the probe of the OP3 Pin 1 seems to be difficult to hit, a check pin can be 
installed. Now that the DIP components are gone, even a board modification such as adding a 
check pin requires a little technology.  
 OPamp 3 1st pin land shown in photo 2.2 to photo 2.3 at 1.5mm squareφ Solder a check 

pin with a 1mm hole as shown in picture 
2.4.  
The hook tip of the probe can now be 
connected, but the land is not very 
strong, so be careful not to apply strong 
force and measure. 

 

 

Photo 2.2 Check pin on OP3

 

   Photo 2.3 Check pin   Photo 2.4 Check pin installation completed 

Add check 
pin here. 



2.2 Serial DAC IC2, IC4 (900 version) IC3, IC4 (ARM version)

The timing diagram for serial synchronous communication is shown in Figure 2.4.
When SYNC is LOW, data is active and data is read at the falling edge of the clock
SCLK. Data is read from the MSB side, and after the LSB is read, it is output to
the DAC register.

The technical details of the resistor string DAC, R/2R ladder DAC and ADC will be
explained later.

Photo2.5 Serial Interface DAC

Figure 2.4. Synchronous communication timing diagram

The control board for this bicycle uses the Analog Devices se-
rial interface DAC AD5611BKSZ (Photo 2.5). Its main speci-
fications are shown in Table 2.1.

Item Contents

0.5V s
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2.3 Analog ( op-amp ) circuits 
2.3.1 Rail- to -Rail Op Amps 

uses the Analog Devices op-amp AD8515 ( Photo 2.6) . This 
op-amp is a very easy-to-use element that has rail -to- rail 
input and output and can operate on a single power supply. 
Here, we will first explain the input and output operating 
ranges, which are the basis of how to use an op-amp. 
 

Input side operating range: 
A typical input circuit of an operational amplifier is a 
differential amplifier circuit as shown in Figure 2.5 . 
In this circuit, the input Vin requires a level that is VBE 
(dead band of approximately 0.6V) higher than VEE, and 
since there is at least a loss ( dead band ) on the Vcc side 
due to the current mirror circuit, the operating range of Vin 
is between ( Vcc - dead band ) and (VEE + dead band ) . 
 

Output side operating range: 
A typical op amp output circuit is a complementary circuit 
as shown in Figure 2.6 . In this circuit diagram, the output 
voltage swing range is (Vcc-V BE ) to (V EE +V BE ) . 
As you can see, even if we look at only the input and output 
circuits, we cannot simply use the full power supply 
voltage. 
DC amplifier with multiple stages of transistors directly 
connected , voltage losses occur in circuits other than the 
input and output circuits as well . As shown in Figure 2.7 , 
the operating range of a general-purpose op amp is (Vcc - 
1.5V) to (V EE + 1.5V) . 
Op-amps that can be operated with a single power supply 
can be used up to the full power supply voltage on the lower 
side, but there is a non-usable range of about 1.5V on the 
Vcc side . 
Rail -to- rail ( full to full ) devices use the full power supply 
voltage, but there are also elements that are rail -to- rail 
on the output side only and rail -to- rail on both the input 
and output sides , so please check the specifications on the 
data sheet when selecting elements. 

図2.5 オペアンプ入力回路

Vcc

Vin1 Vin2

OUT2OUT1

RE
VEE

Vcc

IN OUT

VEE

VBE

VBE

VEE

Vcc

1.5V 1.5V

1.5V

汎用

ｵﾍﾟｱﾝﾌﾟ

単電源操作

ｵﾍﾟｱﾝﾌﾟ

ﾚｰﾙtoﾚｰﾙ

ｵﾍﾟｱﾝﾌﾟ

Photo 2.6 Operational amplifier  
AD8515 

Figure 2.5 Operational 
amplifier input circuit 

Figure 2.6 Operational 
amplifier output circuit 

Figure 2.7 Operating range of 
operational amplifier 

General purpose Single power rail to rail 
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2.3.2 Operational amplifier circuit 
This section provides a general explanation of the operational amplifier circuit used in 
the control board of an automatic attitude control bicycle. 

・Follower circuit (Figure 2.8) 
Vin 

 

Figure 2.8 Follower circuit 

 

 

 

 

 

 
 
 
 
Addition is performed based on A,  

Based on A 
1

fR
R

  is inverted amplified. 

  Figure 2.9 Adder circuit 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When using an operational amplifier with 
negative feedback, the input terminals (-) and (+) 
are virtually shorted and have the same potential. 
The follower circuit feeds back 100% of Vout to the 
(-) input terminal, so Vin = V(-) = Vout, and the 
amplification degree is 'I', which is non-inverting 
amplification. 
Followers are used to convert high-impedance 
circuits that cannot absorb energy into low-
impedance circuits that can conduct current. 
 

 

・Addition circuit (Figure 2.9) 

Since point A of the output of the adder circuit is 
virtually grounded, 

 

Addition in equation 2.3 is performed based on A 
point. 
The virtual ground potential of ○A can be changed 
arbitrarily by changing the potential of the input 
terminal (+). 
 
・inversion amplification 

Figure 2.10 shows an inverting amplifier circuit 
with VR for variable amplification and capacitor 
C1 for high-cut filter. The amplification factor can 
be varied from 10k/10k=21 times to 200k/20k=10 
times. 
For filter characteristics, calculate the frequency 
where Rf=XC1. 

 

R ･･･Find f from equation 
2.3. 

 
The filter effect starts to appear around 800Hz.

 
 

 1 2 ( ) out f V R I I   

1 2 

1 2 
( ) in in 

f 
V V R 
R R 

2 R R Under the conditions of 

1 2 
1 

= ( ) f 
in in 

R 
V V 

R 
  

addition 
Amplification 

 

 

 

2 f fc 
1 

2 f 
f 

R C 

R 

800Hz･･･formula 2.4

Figure 2.10 iterative amplification 
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 2.3.3 Analog circuit configuration 

Analog amplify the angular velocity 
sensor signal from Section 2.1 using 
the operational amplifier described 
in Section 2.3 and input it to the 
ADC built into the CPU. 
The magnitude and characteristics 
of the signals handled by this 
analog amplifier circuit are 
explained using Figure 2.11. 
 
                        

sensor output voltage 
 
Reference output: 1.35V±0.15V  

±0.15V is the output change due to temperature drift, etc. 
Sensor signal: The maximum change level of the output signal when the bicycle is 
running is about 50mVP-P. The sensor signal contains a lot of 30kHz carrier noise and 
vehicle body vibration noise.  
 
 
CPU analog input 
 
The analog input range on the CPU side is 0 [V] to 3 [V], so the best situation is for the 
signal to swing by a maximum of ±1.5 [V] around 1.5 [V]. 
∴This sensor signal amplifier must be designed to comply with the following items. 
・±0.15V temperature drift countermeasure 
・DC amplifier with an amplification factor of about 100 times 
・Noise countermeasures 
The operation of this amplifier will be explained using the analog circuit diagram for tilt 
sensor shown in Figure 2.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 2.11 Analog signal size amplification 

Figure 2.12 Analog circuit schematic diagram 

 

follower 

sensor 

 

additive 
amplification 

amplification 

virtual signal zero 

 Serial  

 analog input 

 

Automatic 
drift 
 correction 
serial 
output 
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・Follower OP1 
Since the output impedance of the sensor is high, a follower amplification is installed to 
lower the impedance. If the input resistor R1 of the summing amplifier is connected 
with high impedance, an error will occur in the summing operation. 
 
 
・Additional amplification OP2 
The sensor signal passed through the follower and the automatic drift correction value 
output from the CPU are added here, and the center of the angular velocity signal is 
adjusted to a potential near the center of the amplification range. 
 
 
・Serial interface DAC IC2 
A DAC (AD5611BKSZ) connected to the CPU via synchronous serial communication 
converts the automatic drift correction value into digital to analog and passes it to the 
summing amplifier. 
 
 
・Virtual signal zero 
Using R5 and R6, connect 1.5[V], which is obtained by dividing the 3[V] power supply, to 
the (+) terminals of OP2 and OP3, and set 1.5[V] as the signal zero of this amplifier 
circuit, 1.5[V] ±1.5[ V] is the amplification range. 
 
 
・Amplification OP2・OP3 
OP2 is a 10x fixed gain and OP3 is a variable gain amplifier circuit. 
Capacitors C1 and C2 are attached to the negative feedback side to form a high-cut 
(low-pass) filter. 
 
 
・Automatic drift correction 
A correction value is calculated in the CPU so that the average value of the analog input 
to the CPU is around 1.5 [V], and is output to the OP2 adder circuit via the serial DAC. 
 
 ◇Try it 2.2 
Let's understand the basic operation of an operational amplifier. 
We will explain operational amplifier feedback using the most basic inverting amplifier 
circuit shown in Figure 2.13 
 

 
An operational amplifier amplifies the 
voltage difference between the input (-) 
and (+) terminals by more than 100,000 
times, so if you apply feedback from Vout 
to the (-) terminal with R2 as shown in 
Figure 2.13, the (-) terminal and ( The 
circuit is balanced when the potential 
difference between the +) terminals 
disappears. 
When the circuit is balanced, the 
potentials of the (-) and (+) terminals are 
equal. This is called virtual ground or 
virtual short circuit.  
 

Figure 2.13 Inverting amplifier circuit 
 

10K 30K 

When the circuit is balanced, the potentials of 
the (-) and (+) terminals are equal. This is 
called virtual ground or virtual short circuit. 

R2 
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 If  Figure 2.13 is represented as a seesaw 
diagram of the resistance ratio of R1 and 
R2, it becomes as shown in Figure 2.14. 
Since the (+) terminal is grounded and 
has 0V, the (-) terminal must also be 
grounded at 0V. It works in order. 
In order to confirm the basic operation of 
an operational amplifier, let's create the 
operational amplifier test circuit shown 
in Figure 2.15 on a bullet board and 
measure the input/output characteristics 
and frequency characteristics. 
The operational amplifier used in Figure 
2.15 is a general-purpose product that 
has two operational amplifier circuits 
built into an 8-pin package. 

Figure 2.14 Explanation of virtual grounding 

The parts used in this circuit can be supplied by our company. 

 orange 

 orange 

 purple 

 

 

yellow 

yellow 

This is virtual 
grounding. 

When the output drops to -3 [V], the 
(-) terminal becomes 0 [V]. 

I set the input 
to 1 [V]. 

The potential of the (-) 
terminal attempts to rise. 

If the (-) terminal goes up, 
the output goes down. 
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The circuit configuration is such that the first stage (OP1) converts the outputs of VR1 
and VR2 into impedances using a follower, so that the next stage's operational 
amplification calculation can be performed without error. The second stage is a 
differential amplification with a gain of 2x. 
Please follow the steps below to measure. 
Measurement ① Inversion amplification 
○- Vary the input voltage and measure the change in the output voltage. 
Turn VR2 to set check terminal CH2 to 0 [V]. 
Set SW1 to the lower side and turn VR1 to change CH1 from -6 [V] to +6 [V], measure 
the voltage of output CH5 at that time, and plot it on a graph. Since it is an inversion 
amplification, the result shown in Figure 2.16 can be obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Measurement ② Non-inverting amplification 
 ○+  Vary the input side voltage and measure the change in the output voltage. 
Turn VR1 to set check terminal CH1 to 0 [V]. 
Turn VR2 to vary CH2 from -6 [V] to ±6 [V], measure the voltage of output CH5 at that 
time, and plot it on a graph. 
 

Measurement ③ Inversion amplification with offset 
○+ Give an offset of +1 [V] to the input side, ○-  Vary the input side voltage, and measure 
the change in the output voltage. 
Turn VR2 to set check terminal CH2 to +1 [V]. 
With SW1 at the bottom, turn VR1 to change CH1 from -6 [V] to +6 [V], measure the 
voltage of output CH5 at that time, and plot it on a graph. 
 
Measurement ④ Non-inverting amplification with offset 
○- Apply an offset of +1 [V] to the input side, ○+  Vary the input side voltage, and measure 
the change in the output voltage. 
Turn VR1 to set check terminal CH1 to +1 [V]. 
Turn VR2 to vary CH2 from -6 [V] to ±6 [V], measure the voltage of output CH5 at that 
time, and plot it on a graph. 
 
 
 
 
 
 
 
 
 

 

 2  1 6       
0 

0 

- 1 2 
- 6 

 output 
+ 1 2 

+ 6 
input 

Figure 2.16 Inversion amplification characteristics 
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Measurement . Frequency characteristic confirmation
Check the frequency characteristics that can be amplified by the operational amplifier. 

The operational amplifier used in this circuit is of a type that cannot amplify very high frequencies. 

Turn VR2 to set check terminal CH2 to 0 [V].
Connect a function generator between AIN and GND with SW1 on the top side, and give an AC 
signal of about P-P 10 [V].
Connect an oscilloscope to output terminal CH5 and observe the waveform.
Gradually increase the frequency without changing the input AC voltage and observe the change
 in the output waveform.
 
If the operational amplifier you are using is TA75358, waveform distortion will start around 20kHz

and the limits of wide frequency range will become visible. 
 
 

Column 2.1 Brushed DC Motor
Brushed DC motors are small, inexpensive, have a large starting torque, and are very
 easy to use. Using the schematic diagram of a brushed DC motor shown in Figure 2-A, 
we will explain how the motor rotates.

・How the motor rotates
The coil and commutator wound around the rotor
shown in the figure rotate. 
The permanent magnets on both sides of the 
diagram are fixed to the motor case and are called
 the stator. The instantaneous positions of the 
brush and commutator shown in the figure are 
such that current flows through coil A in the 
direction of the arrow, magnetizes the rotor as 
shown, and interacts with the stator's permanent 
magnet to rotate coil A to the right. 
When it rotates approximately 90 degrees, the 
commutator's position changes, and current flows
 through coil B, causing it to rotate to the right in 
the same way. The rotor continues to rotate by 
repeating this action.

・Motor speed and torque

When the rotor rotates, the rotor coil moves in the magnetic field created by the stator's
 permanent magnets, creating an electromotive force in the rotor coil.Although it is a 
motor, it is also a generator, and as the rotation increases, the generated voltage also 
increases.

In this case, the generated voltage      and motor current     are shown below.
〔V 〕… Equation 1 A voltage proportional to the rotation speed 

     of the rotor is induced.

ME MI

ME K R B＝ ・・

S

S

N N
NS

S
rotate

stator
commutator

brush

rotor

Coil A

Coil B

Figure 2-A brushed DC motor

ME K R B＝ ・・

magnetic flux density
Rotor rotation speed

Other constants
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…formula 2
 
            
           When the rotation of the motor increases and the voltage 

generated by the motor becomes equal to the battery 
voltage, there is a limit to the increase in rotation speed. 
Since the motor torque is proportional to the current, 
according to Equation 2 above, the maximum torque is 
when the motor rotation is zero, that is, at startup, as 
shown in the torque vs. rotation speed characteristic in 
Figure 2-B.
 
 

 

 

 

 

 

 

 

rotor coil resistance

torque

rotate

Figure 2-B Torque rotation speed characteristics of brushed DC motor

Motor power generation voltage
battery voltage

M
M

V EI
r

power motor  DC motor               brushed dc motor

brushless dc motor

stepper motor

synchronous motor(PM)

induction motor(IM)

synchro motor

celsyn motor

Resolver

Angle detection
motor

AC motor

Stop angle/rotation
 anglecontrollable

Figure 2. Classification of C motors

DC motors have a large starting torque and are inexpensive, so they are
often used in moving parts of home appliances.
In addition, in hand drills and other applications where starting torque is
important, we deliberately rectify alternating current into direct current
and use brushed. DC motors.
 
 
 

This is because AC induction motors lack starting torque.
Recently, trains have been equipped with inverters, but most trains from a
while ago were powered by DC motors.
Streetcars still use DC motors. The reason is that the starting torque is large. 
 
 
 Column 2.2 Various motors

Figure 2.C classifies motors by type, rotation principle, and application.
Let's briefly explain the uses and characteristics of each motor.



- 19 -

①　Brushless DC Motor/Synchronous Motor (PM) 
The brushless DC motor that rotates inside the hard 
disk and the synchronous motor that moves hybrid
 bicycles and large machinery in factories are actually
 motors with the same mechanism.

As shown in Figure 2.D, the surrounding area (stator)
 consists of three-phase coils, and the central rotor
 consists of a permanent magnet (PM), and the current
 position (current angle) of the rotor is detected by a Hall element.
Since you know the position of the surrounding coils and the 
rotor position, you can know which coil to excite next and
in which direction it will turn. It is also possible to stop
at the target position if necessary. The rotation of the brushless 
DC motor/synchronous motor (PM) is completely synchronized with the command.
The motor is driven by a dedicated motor driver or inverter. It will not turn even if 
you connect an AC power source or battery directly.

②　Stepping motor

Since the rotation speed and rotation angle of a stepping motor can be directly 
controlled with a resolution of the number of steps, open-loop rotation control is easy.

However, since the rotation is a step motion, there are some aspects that are difficult
to handle, such as vibration and resonance, and loss of synchronization where 
electrical and mechanical motions do not match.

Figure 2.E is a schematic diagram of a two-phase stepper motor.
The rotor is a magnet with fine teeth all around it.
The stator has A-phase and B-phase coils arranged in pairs around the entire 
circumference with 1/2 tooth mounting positions shifted.
Figure 2.E shows the state immediately after the B phase is driven to the suction
side. Next, when the A phase is driven to the suction side, the rotor rotates to the
right and advances one step. A special driver is required to rotate the stepping motor.

N S

U phase

V phaseW phase

HVHU

HW

Hall element

Figure 2.D brushless DC motor

Figure 2. E-stepping motor explanatory diagram

A phase B phase

stator

rotor
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③Synchro motor
Rather than a motor that converts electrical energy into mechanical energy, there is 
a motor that detects the angle and sends the rotation angle. Many people may not be 
familiar with them, but here we will introduce the most commonly used synchro 
motors.

Figure 2F shows the structure of the 
synchronized motor.
The stator has three sets of coils located at
120 degrees each, which are star-connected 
and taken out to the outside. (S,S,S)123 A 
set of coils comes out from the rotor via a 
slip ring. Usually the rotor
It is used by adding AC power between
R1 and R2.1 2

Connect the wires as shown in Figure 2G, 
and when you rotate the TX side, the TR 
side will also rotate by the same angle.

R1 R2

S1

S2

S3

Figure 2F synchro motor structure

Figure 2G torque synchro

R2R1

TX TR

R2R1

S3

S2S1 S2S1

S3



2.4 PWM control/H bridge driver 

2.4.1 PWM control 

The handlebars and pedals of the automatic attitude control 
bicycle are powered by a brushed DC motor with a built-in 
gearhead. This motor is driven by Toshiba's H-bridge driver 
IC (TB6552FNG) and is PWM controlled. The TB6552FNG 
contains two sets of circuits, A block and B block, as shown 
in the pin arrangement shown in Figure 2.17. Figure 2.18 

illustrates the operation of a block on one side of the block 
using the block diagram for one circuit in the TB6552FNG 
and the terminal descriptions in Table 2.2. 

 
 Photo 2.17 TB6552FNG          Table 2.2 Terminal description 
 terminal arrangement    

 

The TB6552FNG consists of an H-bridge 
and a control logic that drives the motor, 
as shown in Figure 2.18. The control 
logic includes function switching and 
PWM modulation input terminals, 
which are circuits that can control the 
rotation direction and rotation speed of 
the motor. 
 
 
PWM（PluseWidthModulation） The 
control inputs a pulse with a variable 
duty cycle to the PWM pin, and controls 
the speed of the motor by changing the 
average value of the current flowing 
through the motor as shown in Figure 
2.19. In Figure 2.19, the black line 
represents the input pulse waveform at 
the PWM terminal, and the blue wire 
represents the motor current.
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Figure 2.19 PWM 

 
control 
logic 

duty ratio 25％ 

duty ratio 50％ 

duty ratio 75％ 

duty ratio 100％ 

Figure 2. Block diagram 
of 18TB6552FNG 

 Function selection of forward rotation, reverse rotation, short 
brake, and high impedance by combining N1 and IN2 

 Active or standby switching of outputs 

 
 

 
 
 
 

 PWM modulation input terminal, creates a PWM waveform on the CPU side. 

Connect the output terminal motor 

Output is H-bridge operation or high impedance 

Control power supply 2.7V to 5.5V 

Control GND 

motor power 

Motor GND 
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2.4.2 H Bridge Operation  

The operation of the H-bridge is then described using Table 2.3 and Figure 2.20. The 
red FET in Figure 2.20 represents the "ON" state, the red arrow represents the drive 
current of the motor, and the blue arrow represents the current due to the back EMF. 
When the motor is driven, the H bridge is controlled by PMW and repeats forward 
rotation  A or reverse  B and short brake  C. However, if the system is instantly 
switched from the forward rotation  A or reverse  B state to the short brake  C, a short 
circuit current will flow between the FETs due to the delay in the FET switching speed, 
which will cause heat generation in the FET. In order to prevent this instantaneous 
short circuit, a D or E state of about 300 ns is inserted during the switch from A or B to 
C. When switching from short brake  C to  A or  B, the  D or  E state of about 300 ns is 
inserted in the same way as above. At this time, as indicated by the blue arrows of D 
and E, the current due to the back electromotive force generated in the coil of the motor 
flows to the flywheel diode. Operation diagram  F is in a standby state. 

 control input  output 
IN1 IN2 STBY PWM O1 O2 action mode Operation diagram 

H H H 
H 

L L short brake C 
L 

L H H 
H L H Reverse/forward  A 
L L L short brake C 

H L H 
H H L Forward/reverse B 
L L L short brake C 

L L H 
H OFF 

Stop D E 
L high impedance 

H/L H/L L H OFF standby F L high impedance 
Table 2.3 Input/output functions  

 
 

Figure 2.20 H-bridge operation explanation 
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◇Let's try it  

2.3 Let's check the PWM control by 
observing the applied voltage waveform of 
the handle motor. The applied voltage 
waveform of the handle motor is the 
voltage waveform between O1 and O2 in 
Figure 2.18 and between O1 and O2 in 
Table 2.3. In the circuit, pins 1 and 6 of 
connector CN4 (Photo 2.8) are easy 
positions to apply the oscilloscope probe. 

 
 Photo 2.8 CN4 and probe 
 
 

In Photo 2.8, the lead of the lead resistor 
is inserted into pin 1 of CN4 and pinched 
with a pin clip, and pin 6 is directly 
applied by the probe contact. The 
oscilloscope settings are vertical axis = 2 
V/div, horizontal axis = 200 μs/div, auto 
mode. With the remote control and the 
bicycle turned on, the remote control is 
used to operate the steering wheel with 
the remote control, and the remote 
control is used to apply a deviation, and 
the voltage waveform is observed to 
change the duty until the handle follows.  

Photos 2.9 and 2.10 show the waveforms as described in Section 2.4.2 above. The 
direction of the voltage is reversed on the right and left handles. If the deviation is 
large, the duty cycle will also be high, and if the handle follows until the deviation 
is zero, the voltage waveform will also disappear. 
 

 
 Photo 2.9 Right-hand drive operation     Photo 2.10 Left handle operation 

Figure 2.21 PWM control waveform 

duty 50% 

Back electromotive 
force when 
switching from A/B 
to C 
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2.6Remote control light receiving module 
2.6.1Overview of light receiving module 
Automatic attitude control bicycles are controlled remotely using an infrared 
remote control. 
 

 

shield 

 
  

 

On the bicycle side is an infrared remote control receiver module from ROHM Co., 
Ltd.RPM7238-H5KType (photo)2.11)using. 
This light receiving module is shown in the photo.2.11Shield case as well as 
figure2.22As shown in the block diagram of 37.9kHzEquipped with noise 
countermeasures such as a bandpass filter. Since the output is an open collector, 
multiple modules can be connected in parallel. For example, by attaching light 
receiving modules to the front and rear of a bicycle and connecting them in 
parallel, you can control the bicycle from all directions without being affected by 
the directivity of the remote control. 
The signal waveform received by this module is shown in the figure.2.24as shown 
in37.9kHza career in 1200bps This is a waveform modulated with a serial signal. 
Signal when carrier is present1', if there is no carrier, the signal will be '0'. 
 
 

- twenty four - 
 

 

 

 

 

 

Operating voltage 2.7V~3.6V 
Consumption current 300μA 
carrier frequency 37.9kHz 
signal pulse width 400μs〜800μs 
Received light wavelength 940nm 
usage environment indoor 
directional H=45°V=35° 

shield shield 

OUT Vcc GND 

Figure 2.24 Signal waveform 
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2.6.2.How to use the remote control receiver module 
 
figure2.25shows how to use the remote control receiver module. normal UARTAn 
infrared modem is added during communication. 
on the sending sideUARTofTXDsignal and carrier37.9kHzofANDIt is modulated by 
an element and drives an infrared light emitting diode. 
On the receiving side that receives infrared light,37.9kHzAfter removing noise with 
a band-pass filter and detecting it, the serial signal isUARTofRXDinput to the 
terminal. 

 

Optical communication is a communication method that is easily affected by noise, 
so please take measures such as adding a checksum to the message and other 
measures to prevent malfunctions from receiving noise from inverter-type 
fluorescent lamps. 
This light-receiving module is of a type that can receive continuous serial signals, but 
the lightreceiving module of a general optical remote control is1There are many 
methods that can send only word-sized signals, so be careful when selecting a module. 
 
2.6.3remote control transmitter 
 
Diagrams information such as steering wheel angle, accelerator position, push 
button information, etc. from the remote control to the bicycle.2.26It is sent in this 
format. 
 

          $  θ  A S h *  
                     
          
  
 
 

 
 
 
 
 

 
Figure 2.26 Transfer format 

 
Transfer format is from header $ to terminator *6Fixed length in bytes. The 
checksum is θ·A·SThis is an exclusive or. Serial communication isUARTand 
the transfer baud rate is1200bpsis. 

UP· PB 
DOWN·PB 

START・PB 
STOP・PB 

accelerator position 

 Handle angle LSB 
header 

θ θ θ S S S S S 

terminator 
Checksum 

spare 

Figure 2.25 How to use the light receiving module 

Light receiving 
module 

Bicycle side (reception) Remote control side (transmission) 
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◇ Let's try it2.4 

The above diagram2.24Let's observe the 
modulation waveform of the remote control 
signal explained in . the remote control set 
screw6Remove the book, open the lid, and take 
a photo. 
 
2.12Take a photo with the oscilloscope probe 
as shown.2.13Observe the modulation 
waveform. On the remote controlGNDThere is 
no check pin. photograph2.12 Like power 
pilotLEDPinch the outer lead of the pin clip. 

              Photo 2.12 Remote control circuit check 
The measurement points are on the circuit 
diagram.IC1orIC2 of1No. 
pin=UARTofTXD(waveform photo pink) 
and2No. pin =37.9kHzcarrier (waveform photo 
green) andFourNo. Pin = Modulation output 
(yellow waveform photo). 
The vertical axis of the oscilloscope is 
2V/div·Horizontal axis 
500μs/divMeasure with normal single trigger. 
photograph2.13 The waveform of the signal 
 '1'  '0' '1'  '1'  '0'  '0'is. 

                  Photo 2.13 Modulation waveform 
 ◇ Let's try it2.5 

Infrared remote controls are not very resistant to external disturbances. 
Loss to outdoor sunlight. 
The remote control cannot be used in locations exposed to direct sunlight.·Try 
using a light or fluorescent light. 
What will happen if I use it at the same time as a TV remote control?·Infrared 
remote control cannot see with the naked eye whether the element is lit or off, but 
it can be used with digital cameras and mobile phones. 
If you look through the camera on the obi, you can see that the elements are 
shining. 

 ◇ Let's try it2.6 
I tried connecting the remote control light 
receiving modules in parallel. 
Lol. 
The output of the light receiving module is an 
open collector. Because of this, multiple 
modules can be connected in parallel (OR), 
making it possible to operate from all 
directions. 
Current automatic posture control bicycles 
have a light-receiving monitor pointing 
toward the rear. 
One joule is installed, so the photo2.14 If you 
add a module toward the front like this, you 
can maneuver from almost all directions. The 
additional module in the photo is attached 
Photo 2.14 Addition of light receiving module 
to the vehicle body with double-sided tape. 

Photo 2.14 Light receiving 
 module added 
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2.7 three terminal regulator 
2.7.1 What is a three-terminal regulator 
 

As shown in Figure 2.28, the three-terminal regulator has 
three connection terminals (out, GND, in) as shown in 
Photo 2.15 and Figure 2.27, and as shown in Figure 2.28, it 
is a series regulator that inputs an unstable power supply, 
compares the reference voltage with the output voltage, and 
controls the voltage so that the output voltage is stable at a 
constant voltage. 

Output voltages such as 1.8V, 2V, 2.5V, 3V, 18V, and 24 are 
available. For this bicycle, we use the three-terminal 
regulator TA48L03F shown in Photo 2.15 to create a control 
power supply of 3V from 4 AAA batteries (6V). 

 
 

 

 

 

 

 

2.7.2 How to use a three-terminal regulator 

 
 
 
 
 
 
 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Photo 2.16 shows how to use a DIP-type 
three-terminal regulator, and Figure 
2.29 shows how to use a general-purpose 
three-terminal regulator. Since the 
three-terminal regulator is a series 
regulator, pay attention to the voltage 
difference between the input Vin and the 
output Vout and the heat generated by 
the element. 
The minimum input/output voltage 
differential, Vin-Vout, must be 1.7 V 
for general-purpose regulators and 0.5 
V or higher for low-drop regulators. 
However, since the calorific value P of 
the element is the equation 2.5, which 
is obtained by multiplying this 
input/output voltage difference by the 
circuit current I, the design should 
take into account the balance between 
the voltage difference and the calorific 
value. 
P= I(Vin－Vout）〔W〕･･･formula 2.5 

 

   

    n 

Photo 2.15 Three-terminal  
regulator 

GND 

 
Figure 2.27 Dimensions 
 regulator 

Photo 2.16Dip type three terminal regulator  

Figure 2.29 How to use a three-terminal 
regulatorregulator 

unstable 
 power 
supply 

stable 
power 
supply  

 
Reference power  
supply 

Reverse current protection fast diode 

Necessary for impedance correction 
of the main power supply 

Necessary to ensure responsiveness 
to load fluctuations 
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2.7.3 How to use a three-terminal regulator (advanced version) 
In order to increase the current drawn through 
the current boost three-terminal regulator, the 
external transitor TR and the three-terminal 
regulator are circuited like Darlington's 
connections, as shown in Figure 2.30. 
 
If the value of Ireg×R exceeds the VBE of TR, 
the output current I flows, so 
 
 Ireg × R =VBE ・・・formula 2.5 
 Ireg × hFE >I・・・formula 2.6 
 

BE

FE

V RI
h

・・・formula 2.7  

 
This current boost output current is said to be limited to about 5 ～ 6 times that of 
the three-terminal regulator used, so if the TR is 50 ～60 for hFE, the R is 5 ～6 Ω. 

 

A voltage adjustable three-terminal regulator 
can easily be used as a power supply with a 
variable output voltage by changing the 
potential of the G terminal, as shown in Figure 
2.31. However, since the voltage difference 
between the input and output is the variable 
voltage range + the minimum input/output 
voltage, the amount of heat generated by the 
element indicated by the circuit current × the 
input/output voltage difference increases, and 
design needs to be required.  

 

Figure 2.32 shows an example of a circuit for an 
adjustable output voltage power supply using a 
three-terminal regulator. The G terminal of the 
three-terminal regulator uses an operational 
amplifier to set the potential at low impedance. 
By supplying the op amp power supply from the 
input side, the range of adjustment of the output 
voltage setting is extended. 

 

 
 
 

入力
電圧

G
O i

出力
電圧

Figure 2.30 Current boost 

Figure 2.31 Variable output 

Figure 2.32 Voltage 
variable circuit side voltage 

variable  
input voltage 

voltage 
adjustment 

variable  
output voltage 

output 
voltage input 

voltage 
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2.8 About A/D/D/A conversion 
The bike uses a resistive string digital-to-analog conversion (AD5611) and a successive 
approximation analog-to-digital conversion (with built-in CPU) for the angular rate 
sensor input in the drift correction circuitry. Because analog-to-digital and digital-to-
analog conversions are inverted and circuitically similar, the related A/D and D/A 
conversions are described in pairs here. 
 
2.8.1 What is A/D/D/A conversion  
(1) A/D conversion: Converts analog values such as voltage into digital values (bit 
weights). (2) D/A conversion: Converts digital values (bit weights) into analog values 
such as voltages. For example, if you convert an analog value of 6.5 [V] with an 
analog input range of 0 [V] ～ 10 [V] to a digital value with an A/D converter with 8-
bit resolution = 256 (0 ～255), the digital value x is 
 
 
If this is expressed by the weight of 8 bits, it is 128 + 32 + 4 + 1 = 165. 
 

128 64 32 16 8 4 2 1 

〇 × 〇 × × 〇 × 〇 なし→×
あり→○

 

 
The binary representation is 10100101b and the hexa representation is A5h. 
 

 

1/4 
 

Figure 2.33 Balance scale 
 
The analog-to-digital transformation of the sequential conversion method is like a 
balance in Figure 2.33. Find a combination of weights that balance by switching 
weights in order: 1/2 weight, 1/4 weight, and so on. The 8-bit digital value A5h 
described above is converted to digital to analog at 10 (V) full scale. 
 
The D/A conversion is the sum of the weights of the bit weights shown in Figure 
2.34. 

Quantity of electricity to be measured 

can be →○ 

none  →× 
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  + ・・  + ・・  + ・・  ＝165/255×10〔V〕 
＝6.445〔V〕 

Figure 2.34 Bit weight weight 
 

bit weight ×10〔V〕=6.445〔V〕 
In this way, the action of searching for the weighted combinations (bit weights) that 
are all balances is called A/D conversion, and conversely, the action of outputting an 
analog quantity that matches the weights combination (bit weights) is called D/A 
conversion. Note: The reason why the answer is not 6.5V is the full-scale error 
described below. 
 2.8.2 Specific example of A/D/D/A conversion part 1 

Figure 2.35 shows a D/A conversion diagram 
using the resistor string  method. 
For this D/A conversion, as many resistors R 
of the same value as the resolution are 
connected in series, and as many output 
switches SW as the resolution are prepared 
at the connection points. 
Only one output switch specified by the 
binary/decimal decoder is turned on, and the voltage 
divided by the series resistor is output. 
The resistor string method has a simple 
configuration and is advantageous in linearity and 
conversion speed. 
Also, by using the Vref, GND, and A connections in 
Figure 2.35, it can be used as a potentiometer or 
electronic volume as shown in Figure 2.36. 
However, because the number of resistors and 
switches required is equal to the number of 
resolutions, the higher the resolution, the larger the 
circuit becomes and the more difficult it becomes to 
manufacture. (The normal resolution is 8~10 bits) 
The maximum number of bits in the resistor string 
is 2n-1, so a full-scale error of Vref-1LSB will occur, 
but it can be rounded off by adjusting the span.  
 
 
 
 
 
 
 
 
 
 
 
 

  

1 1 1 1 
2 8 64 256 

Vref

R

SW-2n-1

SW-2n-2

SW-2n-3

R

R

R

R

R

分解能2n個の

抵抗Rと SR

SW-2

SW-1

SW-0

GND

Vout
A

デコ ーダー

2n-1

2n-2

2n-3bn

bn-1

b4

b3

b2

b1

Dn-1

Dn-2

D3

D2

D1

D0

2

1

0

図2.35 抵抗スト リング方式D/A変換

GND

Vref

A

Figure 2.35 Resistor string method 
D/A conversion 

Figure 2.36 Potentiometer 

decoder 

 resolution 2n 
Resistance R and SR 
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(2) Flash-type A/D conversion The flash-type A/D 
conversion shown in Figure 2.37 is similar to the 
resistor-string digital-to-analog conversion, with 
the same number of series resistors and 
comparators as the resolution, and the voltage 
level of the analog input value and the string 
resistor are compared. Since the comparator up 
to the same voltage level as the analog input 
value is set to 'ON', high-speed analog-to-digital 
conversion is performed by encoding (encoding) 
the number of comparators in the 'ON' state and 
outputting it digitally. However, higher 
resolutions increase circuit size and power 
consumption, which is not very realistic. 
Normally, the resolution is up to about 10 bits, 
and it is used for image processing and other 
purposes by utilizing high-speed conversion 
capabilities. 

 

2.8.3 Specific example of A/D/D/A conversion part 2 
(1) R-2R Ladder D/A Conversion The resistor-string D/A conversion described in Section 
(1) above requires a power of 2 (e.g., 65536 sets of resistors and switches in the case of 
16 bits) that is equal to the number of resolution bits, and is difficult to fabricate at 
high resolution. Therefore, the shape of the rudder resistor is devised to reduce the 
number of resistors and switches, resulting in the D/A conversion of the R-2R ladder 
method. 

 
We will use the R-2R ladder method D/A 
conversion to explain how D/A conversion 
works. In the R-2R ladder method of 
voltage summing type D/A variant + 
conversion, when switch 8 on the top side 
is connected to the Vref side, half of the 
voltage of Vref is added to the output, and 
at the next switch 4, half of the Vref half 
(1/4) is added, and half of the voltage is 
added each time the bit goes down. 
 

 
 
If the number of bits is infinite, Vout=Vref, but in reality, a full-scale error occurs, and 
Vout = Vref-1LSB, which is spanned by the output amplifier. The R-2R ladder can be 
easily analyzed using the superposition theorem or the Feng-Thevenin theorem. 
Compared to the string method, the R-2R ladder method D/A conversion simplifies the 
circuit but reduces linearity due to resistance errors. In particular, the resistance error 
is an important factor when the number of conversion bits increases. 
 
 
 
 

When all bits are ON 
Vout=Vref-1LSB 

Figure 2.38 Voltage addition type R-2R 
ladder method D/A conversion 

Encoder 

Digital 
 output 

D7 
D6 
D5 
D4 
D3 
D2 
D1 
D0 

R 

R 

R 

R/2 

R/2 

analog 
 input 

Vref+ 

comparator 

Figure 2.37 Flash type 
A/D conversion 

GND 
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(2) Successive approximation method A/D conversion 
 

  

 
 
 
 
Successive approximation analog-to-digital conversion works in the same way as 
weighing weighing. Using the balance in Section 2.8.1 above as an example, the order 
in which the A/D transformation is performed is explained. (1) Since successive 
approximation A/D conversion cannot be A/D conversion in an instant like the flash 
type, the analog input value at the start of conversion is maintained by a Mr./Ms. pull 
hold circuit so that the analog input value does not change during A/D conversion. 
This is the state in which the amount of electricity to be measured is placed on the 
balance plate. (2) Place 1/2 full-scale weight on a weight dish. If the weight side is 
light→ now with the weight on it, and the weight side going to (3) is heavy, → put the 
weight on it now, put it down and go to (3) and put the 1/4 weight of the full scale on 
the weight plate. → the weight side is light, → the weight side going to (4) is heavy 
with the weight on it now, put the weight on it now, and go to (4) and do the same 
work sequentially with the weight going to (4) 1/8, 1/16, 1/32・・・・・ and so on. (5) 
Repeat the same process until the smallest weight, and finally the weight on the 
weight dish becomes the weight of the digitally converted bit. Return the Mr./Ms. pull 
hold to the Mr./Ms. state. In Fig. 2.39, the R-2R ladder type D/A conversion is a 
weight, the comparator is a balance, and the successive approximation register is a 
weight plate, and the above (1)~(5) is automatically executed. 
 
 

 

In voltage-comparison analog-to-digital conversions, analog-to-digital  
conversions that require conversion time, such as successive approximation 
conversions, use a Mr./Ms. pull-and-hold circuit to prevent the analog value 
from changing during conversion.  

Figure 2-C shows the basic shape of the 
Mr./Ms. pull and hold circuit. 
Op amp OP1 in Figure 2-C selects the 
lowest input offset current. The capacitor 
C1 for the Mr./Ms. pull hold is a 
capacitance on the order of pF. After SW1 
is turned off, the analog value of Vin 
stored in C1 is retained, resulting in a 
Mr./Ms. hold. In a real circuit, the 
leakage current of SW1, the natural 
discharge of C1, and the offset current of 
OP1 determine the performance of 
Mr./Ms. pull hold. 

analog input 

Vin 
SW1 

OP1 
Hold output 

C1 

Figure 2-C Sample hold 

sample・ 
hold 

Successive  
approximation 
type register 

R-2R  
ladder type 

D/A conversion 

Vin digital output 

N bit 
data path 

N 

Figure 2.39 Successive approximation method A/D conversion 

comparator
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◇Try it out  
2.7 Figure 2.40 shows a test circuit for a simplified successive approximation analog-
to-digital conversion that combines a 4-bit R-2R ladder digital-to-analog conversion 
with a comparator. Build it on a breadboard or a universal board. The circuit 
configuration is explained. 1/2 of OP1 and OP2 convert a resistor-divider circuit 
(high impedance) to low impedance using followers. 2/2 of OP2 is a comparator that 
compares the analog input voltage to the D/A output of R-2R. When the analog input 
voltage < D/A output voltage, LED1 lights up. R5 is a positive feedback resistor that 
provides a 10 kΩ/1 MΩ hysteresis range for the comparator. The op amp TB75358 
used can operate from a single supply, but the ± 12V power supply is available. 
R10~R17 and SW1~SW8 constitute a 4-bit R-2R ladder D/A conversion. 

 

R-2R ladder type 

D/A conversion 

Figure 2 - A/D conversion with D multiplexer 

Column 2.4 Multiplexer 

Figure 2-D is an A/D converter with an analog multiplexer (analog signal switch). 
Switch multiple analog inputs and perform analog-to-digital conversion in sequence. 
Modern CPUs have built-in A/D conversion and D/A conversion, so there is no need 
to be aware of the hardware, but a circuit like the one shown in Figure 2-D is built 
into the CPU. 
The multiplexer can specify individual channels or scan specifications, but it is 
inevitably affected by the previous conversion channel. 
If the converted value of the previous channel is large, an error will appear in the 
larger converted value of the next channel. This is likely due to the charge 
accumulated between the multiplexer and the sample and hold. Countermeasures 
against this inter-channel interference include: (1) channel placement taking into 
account signal priority; and (2) connecting to GND without using the channel 
immediately before the important channel. 
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How to use: 
Set the Vref. Fig. 2.40 Turn VR2 in the A/D conversion and D/A conversion test circuit 
and adjust the voltage between CH2 and GND so that it is 10 [V]. This voltage is the 
full-scale value for the analog-to-digital and digital-to-analog conversions. SW8 ~ SW1 
to the ↓'0' side. 
 
[ 4-bit D/A conversion ]  
(1) Measure the voltage between CH4 and GND when SW8 ~ SW1 are all downward. 
〔SW-0〕  
(2)Measure the voltage between CH4 and GND when SW8 ~ SW1 is down, down, down, 
and up. 〔SW-1〕  
(3)Measure the voltage between CH4 and GND when SW8 ~ SW1 is down, down, down, 
down, and down. 〔SW-2〕 ( 
4)Repeat in this order until [SW-15]. (5) Record in the table below and plot on the 
graph. 
 

       
0  1  2  3 4  5    6    7  8    9    10   11  12  13   14  15 

Have you confirmed that the analog output value changes by 1 LSB due to the 
combination of SW8 ~ SW1 
SW8 ~ SW1 is a 4-bit D/A converter when operated by a computer. Next, let's use the 4-bit 
R-2R ladder digital-to-analog transform to try out the successive approximation analog-
to-digital transformation shown in Figure 2.39. 
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[4-bit A/D conversion] 

① Set the analog input voltage Vin. Rotate VR1 to set the analog input voltage to any 
value. (About 7V is easy to understand) 
②"Turn SW8 'ON'." This is the same as ② "Place 1/2 full scale weight" in item (2) of 
2.8.3 above. 
If LED1 does not light up, the weight side is in the same state as light, so go to (3) with 
SW8 ON (as it is with the weight you just put on it). When LED1 lights up, the weight 
side is in the same state as heavy, so SW8 is 'OFF' (lower the weight you just put on it) 
and go to (3).10K 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ③ "Turn SW4 'ON'." This is the same as "Place a weight of 1/4 of the full scale." 
LED1 does not light up = the weight is light → SW4 goes directly to ④ 
LED1 lights up = weight is heavy → SW4 is 'OFF' and goes to ④ 
 

 

 

 

Analog input 
voltage setting 

 CH1 
orange 

CH3 
yellow 

CH4 
yellow 

CH2 
orange 
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④ Execute "Perform the same work sequentially with weights 1/8, 1/16, etc." 
Perform the same work as ③ above in the order of SW2:SW1. 
 
⑤The output value of analog/digital conversion is 
The sum of the weights of the switches SW that are 'ON' x Vref. 
For example, when SW8 and SW1 are 'ON' and Vref is set to 10 [V], 
Digital conversion value = (1/2 + 1/16) × 10 [V] = 9/16 × 10 [V] = 5.625 [V] Compare with 
the voltage between analog input voltage CH1 and GND. 
The converted digital value is about 1 LSB smaller at most. This is the full-scale error. 
Turn VR1 a little to change the analog input value a little, and repeat steps 1 to 5 to check 
the A/D conversion operation. 
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Chapter 3 Core CPU for Embedded Automatic Attitude Control 
The CPU of the bicycle can be selected from Toshiba Corporation's TLCS-900 type or 
ARM type. The optical remote control is only TLCS-900 type. Table 3.1 summarizes 
both CPUs. Both CPUs are designed for small-scale embedded applications and 
have the same package, operating voltage, and integrated I/O and processing power. 
TLCS-900 is a CPU classified as CISC type and ARM is classified as RISC type. 
 

Core CPU Model name specification package 

TLCS－900 /L1 TMP91FW27UG ROM=128kbyte LQFP64－P－1010－0.50D 

 Toshiba RAM=12kbyte 
clock=27MHz 

 

ARM TMPM332FWUG ROM=128kbyte LQFP64－P－1010－0.50E 

Cortex－M3 Toshiba RAM=8kbyte 
clock=40MHz 

 

Table 3.1 CPU overview 
 
3.1 TLCS-900 Architecture  
TLCS-900 is a generic name for Toshiba's original 16/32-bit CISC core CPUs. 
Although there are multiple CPU cores, all types have the same set of registers, 
which are fully 32-bit, and can use the same compiler assembler, as well as the 
ability to repurpose source programs from assembly language descriptions. In 
addition, the TLCS-900 distinguishes between 16 bits and 32 bits at the end of L1 
and H1, and although there are differences in the ALU, internal bus width, and the 
number of stages of the pipeline, the usage including I/O is the same, so from the 
user's point of view, the TLCS-900 is a type of core. Processing power is available up 
to 80 MIPS with 32-bit CISC instructions. The TLCS-900, the predecessor of the 
TLCS-900, was designed to be Z80 upcompatible, and the TLCS-900 is an extended 
version of the Z80 in register names, etc., so the Z80 program in the assembly 
language description can be used with some modifications. 

 
3.1.1 Features of the TLCS-900  
The TLCS-900 is designed with a thorough CISC philosophy to improve 
performance, as shown below. 
 
①Generated code is short 
A computer is a machine that reads (fetches) and executes instructions (codes) in 
memory. Instructions captured in a computer execute pipeline processing, and 
generally one instruction is processed at one clock, but since fetching involves 
instructions and operands, some things are not completed in one clock, and the 
processing power of the computer = fetch speed. In other words, the shorter the fetch 
time, the faster the computer processing speed will be, so the TLCS-900 uses variable-
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length instructions and mixes operands in the instruction word to reduce the code so 
thoroughly that it becomes difficult to disassemble it, thereby improving performance.  
 
② Good addressing orthogonality 
Addressing is a method of indicating the data specified by an operand or the storage 
location of the data. A computer executes a program written using a combination of 
instructions and addressing as shown in the following format. 
 

unsignedintMEM,a;   C language description: 

a +＝ MEM;     Addition of MEM and a 
 
 
 
ADD XBC,(MEM）   ；Assembly description: 
            ；Add 4 bytes from the memory address specified  
            ；by （MEM) to the XBC register. 
 
 

CPUs that are less limited in this combination of instruction and addressing are said to 
have good addressing orthogonality. All registers, memory, and stacks can be specified 
for addressing. Even if the processing speed expressed in MIPS is the same between 
CPUs and CPUs that are limited to only registers, such as RISC type, the actual 
execution speed of the program will be several times different.  
The TLCS-900 is a CPU with excellent orthogonality of addressing.  

 
③Function to automatically generate an appropriate operand size 
TLCS-900 has no jump width restrictions such as segmentation for branch instructions 
such as jump instructions and call instructions, and there is no overhead such as 
always using operands with the maximum address width. 
The compiler, assembler, and linker, which are language tools, can determine the jump 
width when reading the source program, so the TLCS-900 language tool automatically 
calculates the branch width and selects the appropriate 8-bit, 16-bit, or 24-bit branch 
width. It uses an innovative technique to generate width operands. 
 
④Conditional CALL command/Conditional RET command 
There are conditional instructions for subroutine calls and returns from subroutines. 
On CPUs where conditional CALL cc and RET cc cannot be used, CALL cc is a 
combination of Bcc + JSR, and RET cc is a combination of Bcc + RTS, which will 
definitely slow down processing by increasing the number of instructions by one. 
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⑤ Rich in CISC instructions 
There are a variety of instructions unique to CISC, such as MIRR (mirror) 
instructions, DAA (decimal correction) instructions, and powerful bit instructions, 
and there are no restrictions on operand size, and 8-bit, 16-bit, and 32-bit widths 
can be combined, so the result The program code is shortened and can be executed 
at high speed. 
 
  
low-priced, high-performance CPUs like the Raspberry Pi (a bit different from 
embedded CPUs) are now easily available, so there is no need to be aware of the 
CPU architecture, but embedded CPUs Back when CISC was at its peak, the 
architectures of the TLCS-900 and M16/32 (Renesas/Mitsubishi) were two of the 
best. 
As microcomputer engineers, we poured our energy into understanding his CPU 
architecture, and we were very impressed. 
 

3.1.2 Register configuration of TLCS-900 
As shown in Figure 3.1, the register configuration of the TLCS-900 is fully 32 bits, 
while the register name is upward compatible with the Z80, making it very easy to 
use because all registers can be used as an accurator. The register configuration is 
unified for all types of CPU cores of the TLCS-900, and programs can be used. The 
following is a brief description of the registers. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1)General-purpose register 
There are seven 32-bit general-purpose registers, XWA to XIZ, shown in Figure 3.1, 
which can be used as accumulators or index registers. 

32 bit 

 16 bit 
 

8 bit 
 8 bit 

general 
purpose 
register 

Dedicated 
register 

control 
register 

   
4 banks 

 
control register 

Figure 3.1 TLCS-900 register configuration 

As a slight aside 



There are four banks of the four XWA to XHL with the same configuration, and bank 
switching can be executed with one instruction, so registers can be saved at high  
speed during interrupts.The number of general-purpose registers may seem small 
compared to RISC-type CPUs of the same class, but this is because compared to 
RISC-type CPUs, where all calcula- tions can only be performed in registers, CISC 
type CPUs, especially the TLCS-900, use the first operand as the first operand. This 
is because addressing is powerful, such as being able to specify a memory area on the 
(destination) side, so there is no need for many general-purpose registers. 
General-purpose registers can be specified as 8-bit, 16-bit, or 32-bit wide.Figure 3.2 
shows a specific example of width specification using the BC register as an example.8 
-bit specification: B register, C register, QB register, QC register 16-bit specification :  
BC register/QBC register 32-bit specification: XBC register 
Note: QB, QC, and QBC are extended instructions and are 1 byte longer. 
 
 

XBC 
 QBC BC 
 Figure 3.2 Register width specification 

(2) Stack pointer (XSP) 
A 32-bit wide register that points to the stack location when operating memory as  a 
stack. The stack is used to store the return address of subroutine calls, and is used as 
a stack frame as a method for passing arguments in the C language. 
 
(3) Status register/flag register (SR/F) 
The upper byte of the 16-bit wide register is the status register SR, and the lower  
byte is the flag register F. 
Figure 3.3 shows the bit arrangement of status register SR. IFF2 to IFF0 are  
interrupt mask registers that indicate the interrupt levels that the CPU can 
currently accept. 
 

 

When the value of IFF2 to IFF0 is 1 or less, all interrupts are enabled, and when the  
value of IFF2 to IFF0 is 7, interrupts are disabled. After the CPU is reset, IF F2 to 
IFF0 are initialized to 7, and when the interrupt enable instruction EI n is executed,  
this value becomes n, allowing interrupts up to interrupt request level = n. 
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QB QC B C 







The CPU PUSHes the program counter PC and status register SR. Writes the
 value  of  the accepted interrupt level +1 to the interrupt mask register IFF.  
Increments the  value of  the interrupt nesting counter INTNEST by 1.

The CPU jumps to the address indicated by the value (0FFFF00H + interrupt
 vector)  address data in the vector table, executes the interrupt service routine,  
and with the  RETI  instruction after the interrupt ends, pops the status register  
SR and program  counter PC,  and loads the interrupt nesting counter. 

Interrupts are also subroutine calls in a broad sense. The difference  between
 an interrupt and a subroutine call is in the method of specifying the jump  
destination.  In the case of a subroutine call, the jump destination address is  
specified in  the  program like CALL label, but since an interrupt is an event  
that starts from a  sudden  interrupt request  event from I/O, there is no place  
to write the jump  destination.  Therefore, a number (interrupt vector) is  
assigned in advance to the  I/O that requests  an interrupt, and a memory area  
(interrupt vector table) is  prepared in which the jump  destination address 
corresponding to that number is  written. When an interrupt occurs,  the CPU  
executes the jump destination interrupt  service routine  written in the vector  
table corresponding to  the vector number sent  from the interrupt controller.

Column 3.1 Interrupts

Decrease  
the value of INTNEST  by  -1.

Interrupt 

controller side

interrupt vector
lvector

CPU side

Interrupt 

vector 

generation

Interrupt

level judgment

comparator

Interrupt

 request F/F

priority 

encoder

Priority 

setting 

register

Interrupt 

request F/F

Interrupt 

request F/F

Interrupt 

request F/F

Interrupt 

request F/F

resetFigure 3.6 Interrupt control schematic diagram



3.2.3 Sales methods of semiconductor manufacturers
Each semiconductor manufacturer receives the ARM architecture blueprint from
 ARM  and  incorporates it into their own CPUs.

3.2 ARM Architecture 3.2.1 History of ARM Company Before explaining  the 
ARM processor and ARM architecture, I will explain the history  of ARM 
Company. ARM was established in 1990 as Advanced RISC
 Machines Ltd., a joint venture between Apple Computer, Acorn
 Computer Group, and VLSI Technology. In 1998, the company changed  its 
name to ArmHoldings when it went public. In 2016, the company  was 
acquired by SoftBank and continues to operate to this day.

3.2.2 ARM's sales strategy ARM does not manufacture CPU processors,
 but rather sells the right to use the ARM architecture intellectual
 property (IP) license, and receives royalty income from manufacturers  who 
receive a portion of the CPUs they sell. It is established as a
 company. Currently, there are over 1,550 companies using IP licenses,  including 
IBM, Motorola, Nintendo, Sharp, and Samsung Electronics.

When MIPS (the number of instructions that can be executed per
 second), which is one of the computer performance indicators, is
 20 MIPS or more, the I/O/memory access time is about 50 ns, which  is the 
limit of direct bus/direct fetch. If the speed is higher
 than this, cache memory is used to run only the core CPU
 peripherals at high speed, and a ``bridge'' is used to access the  low- speed 
bus.

As shown in Figure 3-A, a microcomputer consists of a core CPU and  memory 
(ROM/RAM)/I, each of which is connected by a bus (address bus,  data bus, 
control bus, etc.). As core CPU speeds increase, if the speed  difference between 
I/O and CPU increases, it will no longer be possible to  connect with a direct bus.

Column 3.2 20MIPS wall



(1) Nested Vectored Interrupt Controller (NVIC) The nested vectored interrupt  
controller  (NVIC) can be more clearly understood by dividing it into nested and  
vectored interrupts.  The nested type is a function that appropriately manages the  
order of interrupts based on  the priority of the interrupt when it occurs. When a  
vectored interrupt occurs, it refers to a  place called a vector (interrupt vector
 table)  where the names of interrupt sources are  written, and sends the interrupt  
name to the  CPU. External interrupts can be set between 1 and 240. Interrupt  
priority is set using  an  8-bit register divided into two groups. In most  actual  
products, priority can be set  using 3 to 8 bits. When saving and restoring  registers
 during tail chaining, preemption ,  late arrival, and three interrupts,  continuous 
interrupt  processing is possible without  unnecessary processing. When an 
interrupt occurs, the NVIC  handles the interrupt  according to the  priority of the 
interrupt, and at the same time  performs a process  called stacking  to save the 
currently used registers.

Figure 3.7 ARM architecture details

Then, each company creates and sells its own CPU processor by adding  the 
necessary memory, peripherals, input/output, etc., and other  functions. This  
reduces development time and costs for the  architecture within the CPU, while 
also making it possible to  quickly sell new processors.

3.2.4 ARM architecture details

Figure 3.7 shows the ARM architecture details. I will  explain in the 
order of the numbers in the diagram.



Figure 3.8 shows the memory map of Cortex-M3.

(2) Instruction fetch unit The instruction fetch unit is a unit that  reads the 
instruction program to be executed from memory. The read  instruction program is
 passed to the decoder.

vendor specific

Dedicated  peripheral  bus 
(debug/external)

external device

external RAM

peripheral

code

Figure 3.8 Cortex-M3 memory map example

stack  
data

Initial value of stack  
pointer The stack  pointer 
is a fully  descending  type
 located in static  memory 
(SRAM).

Dedicated peripheral bus  
(internal)



table3.2General-purpose register list

lower registerR0fromR7is for all instructions that specify general-purpose 
registers (Cortex-M3With instructions available in16bit instructions and32bit 
instructions). upper registerR8fromR12specifies a general-purpose register32Can 
be accessed with bit instructions, but unlike lower registers16It cannot be accessed
 with bit instructions.R13(MSP,PSP)is called the main and process stack pointer, 
and stores the current stack pointer position.OSBasically, if you do not 
useR13teethMSP(main stack pointer). In addition to general-purpose registers, 
table3.3status registers likexPSR· There are interrupt mask registers, control 
registers, etc., which can be accessed by special instructions.CPUThis is a special 
register for control.

table3.3 Special register list

(5)ALU

ALUteethArithmetic Logic UnitIt is an abbreviation for ``arithmetic logic device'' 
in Japanese, and performs theoretical operations and four arithmetic operations.
Cortex-M3teeth32bitCPUThereforeALUtoo32Processes bit by bit.



(6)trace interface
(7)memory interface

(8)debug interface
(9)debug system
aboveFourThe items are interfaces and systems related to debugging, which will be 
described later.Cortex- M3The debug system isCoreSightThe debug architecture 
covers a wide range of debug systems, including debug interface protocols, debug 
bus protocols, debug component control, security functions, and trace data 
interfaces. These components are typically used only by debugger software and not  
by your application.

(10) AHB/APBbridge
coreCPUSurrounding high-speed system busesAHBandI/OLow-speed veriferal 
buses such asAPBIt is a bridge that serves as a bridge. thisAHB/APBThe 
bridgeARMbus management architecture,Cortex-M0The same bridge is used in .

column3.3 About low power consumption
ARMThe instruction language architecture ofRISCarchitectureCISCarchitecture

CPU(Intelof CoreIt can be said that the hardware size is smaller and power 
consumption tends to be lower than that of other models (e.g. series). Also, the 
instruction architecture isRISC However, we focused on code density.CICSWe 
are designing instructions close to . Therefore, by making full use of coding 
technology, he is able to extract performance that exceeds the operating clock of 
the processor.

performance high
power consumption

TLCS900H1 Cortex-M3 TLCS900L1
Power consumption low

CMSISaboutcolumn

In the development and maintenance of systems using microcomputers, it is very
 advantageous to utilize technological assets accumulated in the past. ARMThe 
company is trying to improve the portability of its software.Cortex- MSoftware 
interface standard for series CMSIS(Cortex Microcontroller Software Interface 
Standard)announced. This allows peripheral settings andDSPLibrary· ROTThis 
improves the reusability of interfaces, debugger interfaces, etc., making 
development more efficient.Cortex-MThe series processor itself is also conscious 
of standardization.CMSISIt is also designed to accommodate differences in 
microcontrollers for easier software reuse. Also CMSISIt also has the advantage 
of making it easier to participate in the standard because it is a guideline and 
does not require certification.

performance low



3.3 About debugging
Bicycle that doesn't fallARMversion ofCPU TMPM332FWUG(Cortex-M3)has a debug 
interfaceCoreSightis built-in, which isARM Cortex-MThis is one of its major features.  
CPUIn- circuit emulator as speed increasesICENow that the practicality of 
CoreSightteethCPUWhile minimizing the burden onCPUControl, memory access , 
trace functions, etc.ICEIt has the same or better performance.
TMPM322FWUGhas a debug interfaceSWD (Serial Wire Debug)unit and trace output

EMT(Embedded Trace Macrocell)andSWV(Serial Wire Viewer)unit is included.

3.3.1 SWD overview
SWD teeth ARM The company Cortex This is a debugging tool developed 
for Core Sightadopted in 2. It is a wire communication interface, JTAGcan be 
substituted for Debug control with bidirectional data signal (SWDIO)A clock 
synchronized with (SWCLK) of  2 do it with a book ARM This is a proprietary serial 
interface. PhysicallyI2C Semi-similar to bus communication2Heavy communication.

3.3.2Selecting a debug interface
As a debugging interface SWD When you select JTAG Compare with table3.4 As shown
 in the figure, the number of terminals to connect the debugger is reduced, which 
has the advantage of reducing the connector mounting area on the board.

table3.4 Debug interface terminal name

However, all 2 Two-way communication JTAG Although it is not completely 
equivalent to Core Sight It can correspond to Debugger manufacturers provide 
optional connectors that are compatible with both, so you will need to select the 
interface that your device has. TMMP332FWUG teethSWD Built-in debug interface.

3.3.3Trace function
The trace function ETM(Embedded Trace Macrocell) and SWV(Serial Wire 
Viewer)of2 There are different types.ETM Regarding tracing CPUtoETM cannot 
be used without this unit.
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Figure 3.9 ETM trace timing diagram

Both allow tracing without affecting the CPU program, but there are  differences 
in the timing and content of the trace. TMMP332FWUG  supports ETM  and SWV 
tracing.
Table 3.5 ETM trace and SWV trace overview.

Below are the characteristics of ETM traces and SWV traces.

3.3.3.1 About ETM trace 
The  timing diagram  of ETM trace is  shown below.

If you look at the ETM trace timing diagram in Figure 3.9, you can  see that the 
data trace timing is traced at the timing of a function  transition (program counter 
change). Therefore, it is possible to  understand the execution path of the program,
 and with high real -time performance, it is possible to trace the status of the 
system  when it is operating at maximum speed.

3.3.3.2 About SWV tracing
A timing diagram of SWV trace is  shown.

Table 3.5 ETM trace and SWV trace summary

function 1

function 2

function 3



Figure 3.10 SWV trace timing diagram

If you look at the Figure 3.10 SWV trace timing diagram, you will  notice that the 
trace spacing is always the same. This is because  the SWCLK signal is used to set 
the trace spacing. Therefore, it can  be said that tracing is not possible for 
functions that finish  faster than the SWCLK speed. As a countermeasure, it may 
be possible  to deal with this by increasing the SWCLK  clock speed, but this will  
increase the amount of data and may cause trace data to be lost.

3.3.4 Limitations of real-time debugging
The real-time debugger has useful functions such as breakpoints and  step 
operation. However, when debugging embedded devices, the CPU  operation and 
I/O operation do not match, so even if you step monitor  the CPU side, you cannot 
stop the I/O. Since the main task of  embedded devices is I/O control,  this 
debugging work also requires  some technique. For example, you can store  the I/O 
operation history  and CPU operation status in memory, and perform a  memory 
dump of one  cycle of I/O operations.

function 1

function 

function 
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Chapter 4 Program structure

This chapter explains the program structure for embedded control equipment.
PC programs running on Windows OS have large task processing units, so they
often keep the operator waiting while the task is being executed.
However, with embedded programs, the object to be controlled is a machine, and
programs are written to ensure the execution speed required by the machine,
without making the machine wait. Although it is possible to write a control
program using an embedded OS such as μITRON, here we will explain the
structure of a program that independently controls a microcomputer.

4.1 Task control
Let's use examples of single-tasking and multi-tasking programs to understand the
problems with single-tasking structures.

4.1.1 Traffic light control using single task

Photo 4.1 shows a push-button pedestrian signal, and the roadside signal is
blinking yellow.
Photo 4.2 shows a security light warning device installed on a traffic light pole that
is only used in certain areas of Japan.
If you press the push button SW attached to the traffic light pole when you are
being followed by a suspicious person, the siren and patrol lights will intimidate
and repel the suspicious person.
First, let's consider the traffic light program.
Figure 4.1 shows the single-task control flow diagram for the traffic light shown in
Photo 4.1, which has a pedestrian push button (PB) switch, the road side is
flashing yellow, and the signal is waiting for an input to the pedestrian push
button (PB) switch.

roadway signal 　　　　　　Pedestrian Signs

siren 　　　　patrol light Security push button SW

Photo 4.2 Security siren・pat light

signal push
button

Photo 4.1 Traffic light

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
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Signal light display status (1) and (2) are blinking yellow. A 1 second loop timer is
running in a loop to keep track of the time while monitoring the status of the
pedestrian push button (PB) switch between blinking display states (1) and (2).
In display status (3), (4), and (5), the signal changes from blue to yellow to red, but
the loop timer is still taking time during this time.
Next, let's consider the problems with the single-task structure.
① It is necessary to write the same routine in multiple places, such as checking the
pedestrian push button (PB) switch and loop timer, making maintenance time-
consuming.
②The computer is only killing time with a loop timer and is not doing any real
work.
③ When writing additional programs, the same routine must be added to each loop
timer. When a program is added to the loop timer, the loop timer value changes,
and the counter value must be adjusted each time.
Here, we used the waste of a loop timer as an example to explain why programs
with a single-task structure are not practical. Did you understand?
Next, let's add a security program to the flow diagram in Figure 4.1.
Let's consider a program that constantly monitors the state of the security push
button SW and activates the siren and patrol lights for 3 minutes when the
security push button SW is pressed.
It will be difficult!

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


4.1.2 Traffic light control by multitasking
Multitasking without an OS creates an infinite loop in the main  routine as shown 
in Figure 4.2, and while going around in the main  routine, it checks the start 

conditions of each task (thread), and  if the conditions are met, it executes the 
corresponding task  (thread). In assembly code, an infinite loop is created by 
returning  from the last line of the main routine to the first line with JP MAIN. 
When written in C language, for(;;) or while(1) is used within  main( ).



Table 4.1 Traffic light status

Figure 4.3 Pedestrian PB check

Next, we will explain the SW_CHK, TIMER, and SINGO threads.

In the main routine for signal  control 
shown in Figure 4.2, the  10ms, 100ms, 
and 10ms time event  flags are checked 
in sequence  while looping around in 
the main  routine. When a time flag is 
set , the program  goes to the  
corresponding thread, first  turns the 
time flag OFF,  executes the thread 
once, then  returns to the main routine 
and  resumes checking the time flag.  

In this way, each task (thread)  SINGO,
 TIMER, and SW_CHK is  executed. 
You can also add any  program to the 
CALLOPTION  position in Figure 4.2. 
Section 4.1.3 shows an example of 
adding a  crime prevention program 
(BOUHAN).

Figure 4.2 Signal control main routine

Figure 4.4 Timer A Counter DEC



After waiting for the time set by the execution prohibition timer, the traffic  light
 will perform the following actions:

Normally, the roadway signal is flashing yellow, and the pedestrian signal is red
 (no  crossing), and it is waiting for an event in which the pedestrian's push button  

(PB)  switch is pressed. State 1  2 When the pedestrian's push button (PB)  
switch is  pressed, the pedestrian PB flag turns 'ON', control moves from state 1, 2  
to state 3 , 4, 5, and state 3 is set. From each state of state 3, 4, 5, the execution  
prohibition timer waits for a time, the roadway signal switches from green to  
yellow  to red, and when the roadway signal is red, the  pedestrian signal turns  
green, then  returns to flashing yellow, and state 1  2 is repeated, waiting for a  

push button  (PB) input.



Addendum 3: Add BOUHAN to the CALL
 OPTION  position in the same way as SINGO,
 using a  10ms  event flag. The crime  
prevention program  also  uses state numbers.  
State number 0 is the  switch  input waiting  
state, and state number 1 is  the siren  and  
police light are activated, and the  crime  
prevention program is in progress.

4.1.3 Adding a security program
The CALLOPTION section of Figure 4.2 shows an example of adding a  program 
called BOUHAN that activates a siren and a police light for  three minutes when  the
 security push button is pressed.

Addendum 1: Following SW_CHK1, add Figure 4.6 Security PB Check  SW_CHK2. 
Addendum 2: Following TIMER1, add Figure 4.7 Timer B  Counter  DEC TIMER2.

Figure 4.6 Crime Prevention PB Check Figure 4.7 Timer B Counter DEC

Figure 4.8 Crime prevention  control program



summary

To maximize the performance of a microcomputer system, one task must not  
monopolize CPU resources. Each  task and interrupt uses a  single CPU at a set

 time  (time sharing), so the golden rule is that each task must borrow the CPU  
from the  main  routine and immediately  return it to the main routine when it has  
finished its  work. The CPU must not be used as a loop timer or to wait  for I/O.  
CPU resources  are the shared property of the computer system.

4.2 Program Structure
When dealing with embedded programs, it is essential to understand  the 

transition from CPU startup to main(), as well as the  multitasking that you create
 yourself by manipulating the main  routine, interrupts, and subroutines. Even 
when configuring  multitasking using an embedded OS such as   ITRON or Linux,
 the primitive  multitasking introduced here is the starting point.



4.2.1 Primitive multitasking
Since both the TLCS-900 and the Cortex-M3 are vector-activated, the  program 
structure is composed of (1) the vector table to (5)  subroutines as shown in  Figure 

4.9, and the transitions from startup  to main( ) and within main( ) are also 
performed in the same way.

Primitive multitasking enters the main routine after the CPU is  started and 
initialized, as shown in Figure 4.10. The main routine  is an infinite loop that goes 
around and around, checking the  execution conditions of tasks, subroutines, etc., 
and executing them  if the conditions are met.
Also, when an interrupt request occurs, the corresponding interrupt  service 
routine is executed. Multitasking is achieved by  distributing CPU resources 
smoothly among tasks, subroutines, and  interrupts executed from the main 

routine, and using them skillfully. Next, we will explain each program block (1) to 
(5) in Figure 4.9.  Please use an editor to visually trace the included  program and 
read  the overview of each program block.

(1) Vector table
The vector table is a list of jump destinations when an interrupt  occurs. The 
TLCS-900 has the vector table located at address FFFF00H , while the Cortex-M3 
has the vector table located at address 0 by  default.



In the case of Cortex-M3, a vector table with one data item of 4  bytes is placed 
from address 0H as shown in List 4.1. Address 0H is  the initial value  of the stack,
 and Reset_Handler at address 4H  describes the start address of the initial 
routine in which the  system initials and I/O initials are described as shown in 
Figure 4.9. Copying this value to the program counter jumps to the start of the  
initial routine. Addresses up to 3CH are system interrupt frames  such as debug 
interrupts, and from address 40H onwards, interrupt  vectors from I/O provided by
 the device vendor are placed.

The TLCS-900 vector table is  
located from address FFFF00H  as 
shown in List 4.2, with  the system-
related vector  area up to address 
FFFF1CH  and the normal interrupt
 vector area from there.

(2) Initial routine
The actual allocation address value of the first line of the initial  is written in the 
reset vector, and when the CPU is reset, the reset  vector is copied to the program 
counter and the fetch of the initial  program begins. The initial setting of the 
embedded CPU first sets  the multiplication of the  system clock oscillation circuit 
and  operates the CPU with the normal clock.  This is a method of creating  a high-
frequency system clock by analog processing of a clock with  an original oscillation 
of about 10MHz. For example, multiplication  such as multiplying the original 
oscillation of 10MHz by 8 to create  80MHz, and then dividing it by 2 to create a 40
MHz system clock to  adjust the waveform is commonly done in embedded CPUs.  
Next,  set the  dual-purpose terminal to a dedicated I/O terminal or a general -
purpose input/output port according to the purpose, and then perform  detailed I/O
 settings. This work should be done carefully according  to the purpose of use, with 
the instruction manual of each  manufacturer in hand. Finally, jump to main( ).

List 4.2 Vector table example for TLCS-900

























The
Analog5.1  value initialization
 tilt and turning sensors used in bicycle teaching materials are  relative value  

sensors  that have a large temperature drift, so before riding the bicycle, the  drift  
value  must be  corrected and the zero points of tilt and turning must be
 established  with the  bicycle  standing upright and stationary. Specifically,  
after turning the  bicycle's  power on,   set  the bicycle on the starting platform  so
 that the body is as  upright as possible,  and  press the  stop button on the  
remote control,  the sensor's  automatic drift correction  and zero  adjustment  
will be performed. During  the automatic  correction, the LED lamp  mounted  on
 the bicycle's control board will flash, and when the  automatic correction is  
completed, the LED  lamp will go out and standby is complete. Next ,   press the  
start button,  and the LED will  light  up continuously, and from there  raise  the 
accelerator knob and the  bicycle will start  moving.

Chapter 5 Bicycle Control Architecture

This bicycle teaching material provides three types of programs that  perform  the 

same control: 1) C language program for ARM, 2) C  language program for TLCS-9
00, 3) Assembly language program for TLCS -900. The function names and label 
names for each program are the same , and the control architecture is also the 
same, so here we will  explain each program together, listing the related function 
names  and label names for bicycle control.

5.1.1 Drift correction hardware 
The tilt sensor and turning sensor  used in the bicycle teaching materials are not  
absolute value sensors , but angular velocity sensors that output relative values.  
In  addition, this angular velocity sensor is more susceptible to output  changes  
due to temperature drift than to changes in sensor output due  to changes in  
angular velocity, so as introduced in sections 2.1.1 and 2.1.2, it is a sensor that  
requires some ingenuity in how it is  handled. This angular velocity sensor  
operates on a power supply  voltage of 3 [V] and the output signal has a drift  
element  of about  ± 0.75 [V] centered on 1.35 [V], but the amplitude of the signal 
due  to angular velocity is small and an amplification factor  of 100 times  or more
 is required. As shown in Figure 5.1, it is  possible to 

address this issue  using an AC amplifier 
with an  added coupling capacitor C1, but
 adding C1 will result  in a high -pass 

filter (low-cut filter)  that  will sacrifice the
 frequency  characteristics of the amplifier
 circuit. Therefore, this teaching  material 
uses a method to correct  the sensor drift 
using the output  of a serial DAC 
controlled by the  CPU in a DC amplifier, 
as shown in  Figure 5.2.

Figure 5.1 Op-amp AC amplifier circuit

IN



When a stop button switch command is received from the  remote control, drift  
correction  is  performed in the following order. The drift correction sets  the ADC  
input terminal  voltage to  about 1.65 [V], half of 3.3 [V], and the AD conversion  

value Turn_base,  Slope_base or (1042H), (1044H) at that time becomes the  
reference  value for the AD  conversion input.  After drift correction, the sensor  
input value - reference  value  becomes the analog input  value with polarity.  

Check the remote control status bit  RC_Sbit( ) Checks the stop order bit  from the  
remote control and jumps to RC_STP( ) if  there is  an order  Jumps from  
RC_STP( ) to  Ana_RST( ), which prepares the analog reset  flag, etc., and  turns  
ON the reset flag for the tilt  sensor and rotation sensor. The LED lamp  starts  

flickering.  The 100ms flag routine TIM100()  calls FLICK() to execute flicker  and
 A_Reset() to execute analog  reset at 100ms intervals.  FLCK() causes the  LED 

lamp to  flicker at 0.3s intervals while the  flicker condition is met.  A_Reset() is 
called periodically  from the 100ms routine and executes  the following. If the tilt  

sensor reset flag is set, it calls  KEI_RST() to reset the tilt sensor in  step  . If the 
rotation  sensor reset flag is set, it calls  SEN_RST() to reset the  rotation sensor in 
step  . If there is no  tilt/rotation reset flag, the  current  steering wheel position is 
set as the steering  wheel reference  position and analog  reset is complete.  
KEI_RST() To find the tilt sensor  correction value, it  adjusts  the serial  DAC 

output value with KEI_INC() or KEI_DEC() to bring the  ADC  input value  to 
around 1.65 [V], and when it is within that range, it turns the tilt  sensor reset  flag 
'OFF'. The  calculation of ADC input value - reference value =  polarized slope value 
is  performed within  AD_AVE() to create a value of  approximately ±500 bits, and 
this is then  accumulated  eight  times to create a  value of ±4000 bits.

from 0 to  102

Using an adder circuit  
consisting of an op amp , Rf, 
R1, and R2 in  Figure 5.2, a 
polarity  calculation  is  
performed on the  sensor  
output and DAC  output  
with Vref as the  reference, 
and the  output  of the serial
 DAC is  adjusted so that  the
 average input value  of  the  
ADC input  terminal  is near
 the  center of  the ADC 
input  range (1 .65V).

3 bits into analog-to-digital conversion.

Figure 5.2 Schematic diagram
 of automatic drift correction circuit



Notes on drift correction
 The drift amount of the angular  velocity sensor used in this bicycle teaching  
material  can  be large when the power is  turned on or when the ambient  
temperature changes.  As  explained in section 5.1.2, drift  correction is performed  
once when the stop button  on the  remote control is pressed in  manual driving  
mode, so if the drift amount is  extremely large,  it will go out of the range of  ±1.65 

[V] in a short time and the bicycle  will not be able to run  normally. The bicycle  
will not  stop turning despite the control  from the remote control. If  this  happens ,
 please stand the  bicycle upright again and  perform drift correction. The drift  
amount will stabilize once the  temperature of the  sensor element stabilizes.

The handlebar operation of this bicycle teaching material is configured  with  
automatic  balancing control that tracks the deviation between the order and  
feedback  to zero, as  shown in Figure 5.3. In addition, proportional control is also  
performed, which  sets the  tracking speed proportional to the deviation using a  
PWM  motor driver. Here, we  will list  the names of functions related to  automatic
 balancing  using proportional control  and  explain mainly the software.

The average calculation routine AD_AVE() performs eight integrations  to obtain a
 value between 0 and 8184 bits, and the reference value  is subtracted from this 
value to obtain polarized data of  approximately ±4000 bits.  SEN_RST() To find 
the correction value for the  rotation sensor, the serial DAC output value is 
adjusted with SEN_INC() or  SEN_DEC, the ADC input value is set to 
approximately 1.65 [V], and the rotation  sensor reset flag is set to 'OFF' when it
 enters the  range. The calculation of the  polarized rotation value (ADC input  
value - reference value = polarized rotation  value) is performed with TuenPID(),  
and the value is approximately ±4000 bits.

Figure 5.3 Handle operation block diagram



The remote control sends a six
-character  message starting with the  
header $ shown  in Figure 5.4 via  
infrared communication,  and  in the  
message is the steering angle.  This  
string is handled by the array  
RX0_RES_BUF[ ] or the (1200H) buffer.  
The string looks like this:

his is the header
The handle angle

Acc  

Terminator

(2) Automatic steering angle order The steering angle during automatic driving is  
calculated from the information from the tilt sensor, turning sensor, and speed
 sensor,  as  well as the steering angle information from the remote control.

5.2.1 Overview of steering wheel control
We will now provide an overview of steering wheel  control
 for the automobile teaching materials  shown in  Figure 5.
3. (1) Manual steering wheel  angle order

he 8 bits of the steering  angle  
byte and the upper 3 bits  of the 
status byte (a total of 11  bits) are 
mixed in HDLangl() and  the ±800
-bit (1) manual steering  angle is  
stored in Hndl_angle or (1034H).

h Checksum Value

S Status Byte

Exclusive OR value of  A, and S

el Byte Sets the driving speed as an 
8-bit binary value.

For information about the optical remote control, see section 2.6 Remote Control
 Receiver Module.

(3) Comparison calculation
Within the automatic handle AUT_HDL() or  manual handle HND_HDL(),  
deviation  = (handle order angle) -  (feedback  angle) is calculated.  With the 
deviation as an argument,  if the order  angle is large, the  handle jumps to  the 

left rotation  L_side(), and if the order angle  is small, the handle jumps to the  
right rotation R_side(), thereby  setting up proportional control.

Figure 5.4 Remote control message

status

header



(4)Motor Driver

(5)Rotary Encoder

Figure 5.5 Spee control by PWM

The hardware drives the steering  
motor with a PWM-controlled H -bridge
 proportional to the  deviation.

The software uses the timer's  square 
wave output mode as shown  in Figure 5
.5 with the L_side( )  or R_side( ) 
settings, drives  the H-bridge with a 
pulse width  proportional to the 
deviation,  and performs proportional  
control by varying the motor  speed. For 
information on PWM  control and the H-
bridge driver,  see Section 2.4.

The bicycle teaching materials  use an 
AB-phase incremental type  rotary 
encoder, whose output  waveform is as  
shown in Figure 5.6, to detect feedback 
of the  handlebar angle.

The handle angle encoder is  explained 
in Section 1.2.2. Please refer to it. This  
encoder is  built into the handle drive 
motor and generates 12 pulses per  
rotation. When calculated  from the  
motor reduction ratio, 507.7  pulses  are
 generated for a handle angle of  ±70°. 

In this bicycle  teaching material , the rotation angle is detected at the  falling  and
  rising edges  of the  A phase  as shown in Figure 5.6 to further  improve the  

resolution,  so 1015.4  pulses (±507. 7 pulses) are  obtained for  a handle angle of  
±70°, enabling smooth handle control. Edge  detection  is performed by an  
interrupt,  and the encoder's   pulse buffer Hndl_feedback  or  (1070H)  is  

incremented or  decremented  according to  the direction at each interrupt. The  
interrupt function  name is as follows:

Figure 5.6 Encoder output waveform

RiseFall



5.2.3 Proportional Control
Proportional control performs mechanical control with an actuator speed
 proportional to  the deviation between order and feedback, as shown in Figure 5.8.
Proportional control  speeds are divided into 1) the deadband range where the 
actuator does  not move, 2) the  proportional control range where the deviation and

 

speed are proportional, and 3) the control range at maximum speed. 1) Deadband, 
deadband Even when proportional control  is performed, a minimum deadband is

 

necessary. Set a deadband that ensures a  stable state without fine hunting.

Figure 5.7 ON/OFF  control

Figure 5.8  Proportional  contro

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

Proportional control, such as electric servo  
mechanisms and proportional solenoid valves,
 is commonly used in the mechanical control  of
 industrial equipment.

There are two types of actuator drive: ON
-OFF  control and proportional control. In ON -
OFF  control,  as shown in Figure 5.7, when  
the  deviation between the order and  feedback

exceeds the deadband width,  the actuator  
turns  'ON' and moves at maximum speed in
 the  direction that  reduces the deviation.  
When the  deviation amount  enters  the  
deadband width,  the actuator turns 'OFF'.

When this ON-OFF operation is performed
 with  an  electric actuator, for example,  the  
deviation enters  the deadband and the motor
 is  turned 'OFF', but the  motor cannot stop 
immediately, so the actuator runs for  a while  
and then stops.

If the deadband width is narrow, there is a
possibility  that  it will  run beyond the
 outside  of the deadband on  the  other side, in 
which  case   the actuator turns 'ON'  again,  
moves at maximum speed in the direction  that
 reduces  the deviation, and  when the  
deviation amount  enters the deadband width,  
the actuator turns  'OFF'.

If the dead band is set narrow with ON-OFF control, the above steps  and  will  be 
repeated, resulting in a symptom known as hunting, and the actuator will go back and
forth  and will not  stop.
Since the dead band cannot be made very narrow with ON-OFF control, you cannot
 expect very  good stopping position accuracy.
With proportional control, the actuator decelerates in proportion to the deviation, as
 shown in  Figure 5.8, so  "overrunning" does not occur much and the stopping position  
accuracy is good.

Control Range



Calculate the tracking direction from the deviation, and  when it is 
greater than the dead band width

PDead band of proportional control Dead_B, proportional control width rop_W

If there is backlash or play in the mechanical parts or a time delay  in the feedback 
system, problems such as hunting that does not stop  or unstable stopping position 
accuracy will occur, so it is important  to investigate the  cause. Also, even if the 
actuator startup speed is  set from zero, there is a  high possibility that the 
actuator will not  move because there is not much startup torque in reality.

It is necessary to set a minimum speed at startup, such as A_min in  Figure 5.8.  
Proportional control range This is the region that accelerates and  decelerates
 from the minimum speed to the maximum speed with a certain deviation  width,  
and the purpose is to smoothly start and stop the actuator. If this region is  
shortened, it will be equivalent to ON-OFF control, and if it is longer, the  
actuator's tracking speed will be slower.  High- speed control range This is the  
region where the actuator operates at high speed. The maximum speed value can  
also be adjusted. The names of the proportional control functions are as follows:

5.3 Pedal control
Pedal control (vehicle speed control) is performed by remote control  to control 
forward and reverse, and speed control by PWM. In addition ,  the vehicle speed is 
measured by counting pulses from the rotary  encoder built into the motor, but the 
encoder value is not fed back  like in steering wheel  control, so it is an open loop.

Calculate the following direction
 and deviation and jump

After setting the minimum speed A_min, set the timer PWM

Calculate deviation and jump

Motor rotation control



As shown above in Figure 5.4 Remote Control Message, an 8-bit  speed command is  
sent  from the remote control.

Manual
ackward Order ASpedal( )Automatic

Motor reversing

Motor moving forward

Motor moving forward

Motor reversing

The square wave output of the CPU's built-in timer is connected to  the PWM  
terminal  of the  H-bridge driver that drives the pedal motor for PWM control.

The same process is carried out for steering wheel speed control.

The 8-bit value 0 to 255 is divided into three parts,  

forward (Ahead) , stop, and reverse
 (Asturn),  and  you  can  freely  control

 
forward  and  backward  movement  using

 accelerator  knob  on  the  remote

 
control. The  pedal  is  operated  as  follows: 
theFigure 5.9

 Speed command from remote  controll
The pedal order shown in  
Figure 5.9 is generated  based 
on the current  accelerator 
position of the  remote control.

If the pedal  order is forward , depending on  the current  situation, it  will start  forward,
 stop to  reverse, or  maintain the  current  situation  and  only  set  the  speed.

Motor stopped

Motor stopped

Motor forward start

Motor reversal preparation/stop

Speed setting update

Motor reverse start

Motor reversal preparation/stop

Speed setting update

When the pedal order is reverse, just like forward, you stop or maintain the current state to
 start  reverse or reverse depending on the current situation, and only set the speed.

The duty ratio of the timer  
square wave output can be  
varied as desired by a  program,  
as shown in Figure  5.10. 
However, even if the  duty ratio  
is set to its  maximum, for 
example, in  the case of an 8- bit 
timer,  the duty ratio will be up  
to 254/255.

In the TLCS-900 version example program, when AHrning() detects a  duty of 
254/255 or more during forward rotation only, the timer  output is switched to the 
boat output and '1' is output continuously , making it 255/255.

Figure 5.10 Timer square wave output waveform



The traveling speed of a bicycle is one of the essential  elements in bicycle posture  
control  calculations. In this teaching material, the traveling  speed is measured  by
 counting the  number of output pulses from the rotary encoder built  into the  pedal
 motor at regular  intervals. For specifications of the pedal motor and rotary  
encoder,  refer to section 1.3  above. Pulse measurement is performed by counting  
the  number  of pulses at 100 ms  intervals in the interrupt function shown below,  
and then  storing  the result in Pedl_encoder  or Pedl_enc or (1040H) after scaling  
the number of  pulses  x 15 to make it a convenient  scale for posture control  
calculations. The number of  pulses after scaling is a value of  approximately 450  
to 1100. Pulse count interrupt  function  name
T LCS 900 INT0_Z( )
A RM INT0_IRQHandler( )

5.4 Automatic Attitude Control
The automatic attitude control of the bicycle teaching material in Figure 5.11  
operates  the  handlebars to return the bike to its original tilt, just like when we  
normally  ride a  bike, and  also operates the same handlebars to turn in the  
desired direction. In this  section, we will  first explain the mechanism of attitude  
control, and in the next section  we  will explain how  to develop an attitude  control
 program.

Figure 5.11 Automatic attitude control bicycle teaching  material
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5.4.2  Straightness correction 
The bicycle can be operated without falling over by handling the handlebars 
according to equation 5.8 or 5.9, which is derived from the previous equation: tipping 
force - centrifugal force - inertia force = 0. 
However, errors due to offset and drift of the inclination angular velocity sensor (① 
in Figure 5.11), which measures the inclination angle, an element of posture control, 
accumulate, making it difficult to ride in a straight line, especially for long periods 
of time. 
To improve this straight-line riding ability, a turning angular velocity sensor (②) is 
used to correct the error of the inclination sensor (①). 
Specifically, straight-line stability is improved by correcting the inclination angle in 
equation 5.12 using correction value C, which is obtained by proportional and integral 
processing of the output of the ② turning angular velocity sensor calculated in equation 
5.11, and calculating the steering angle. 
 

ωTurning correction value 3 4C K K dt  ･･･Equation 5.11 

Handle angle 
Correction value

2K
V

･･･Equation 5.12 

5.4.3 Control using a remote control 
The direction of travel of an automatic attitude control bicycle can be controlled as 
desired using a remote control. 
②The value of the turning correction value C, which is obtained by proportional 
integral processing of the output of the turning angular velocity sensor, is 
intentionally changed using an external remote control, and false turning 
information is given to equation 5.11, resulting in the bicycle turning. 
When turning, the integral term of the turning correction value is cut. If this integral 
cut is not performed, straight-line stability after turning will be impaired. 
The timing of this integral cut and how the accumulated error contained in the 
integral value is handled have a significant effect on the riding performance of the 
bicycle, and are one of the techniques in programming automatic attitude control. 
 
5.5 Attitude control program 
The automatic attitude control program explained in Section 5.4 is deployed in 
CALCU( ). 
The output values of 0 to 1023 from the 10-bit A/D conversion, which is performed 
once every 0.313 ms, are accumulated eight times, and data from 0 to 8184 is 
prepared once approximately every 2.5 ms, then CALCU( ) is executed and the 
following five calculation functions are called. 
When explaining the contents of the functions, the input and output variable names 
are listed in the order of the TLCS-900 C version, ARM C version, and TLCS-900 
ASM  
 
5.5.1 V2_SCAL( ) 
The actual speed pulse value Pedl_encoder or Pedal_enc or (1040H) is squared and 
scaled so that the output value is approximately 40 to 1000, then output to Speed_sq 
or (1052H) and used by RUDDER() to calculate the steering angle for autonomous 
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 5.5.2 TRNrate( ) 
Calculates the average and moving average of the turning value. 
The turning value input Turn_val_tmp or Turn_P_buf or (104AH) is input once every 
2.5 ms. This is accumulated 12 times to obtain polarized int data once every 30 ms, 
which is then put into eight ring buffers to calculate the moving average. 
The moving average output of the turning angular velocity Tangle_ave or (10A4H) is 
output once every 30 ms and is used within TurnPID() to determine the limit of the 
steering angle. 
 

5.5.3 TurnPID( ) 
To improve the straight-line stability of the bicycle, the lean angle error shown in 
Equation 5.12 is corrected using the correction value Equation 5.11. 
The output of the proportional term of the correction value is Turn_Val or 
Turn_P_calc or (1046H). 
The output of the integral term of the correction value is Turn_I_calc or (104EH). 
When integration is used, the integration value limit and reset timing are difficult 
elements. 
In the current program, turning integration is stopped while turning. 
The integration limit is set to a maximum limit of ±1000000 bits within K_max(). 
To prevent the sensor drift value from accumulating, one bit is subtracted once every 
2.5 ms. 
Although we are taking the above measures, we believe that the current situation is 
not optimal. 
  

ωTurning correction value 3 4C K K dt  ･･･Equation 5.11 

Handle angle 
Correction value

2K
V

･･･Equation 5.12 

To control the bicycle using a remote control, the value of K3 in Equation 5.11, the 
turning compensation value, is intentionally changed by the handlebar angle on the 
remote control. 
When the bicycle is in automatic driving mode, a dead band of ±200 bits is set around 
the center of the handlebar angle on the remote control to distinguish between 
turning and going straight. 
Within ±200 bits, the bicycle will go straight, and any handlebar angle greater than 
this will cause the bicycle to jump to LtrnODR( ) or RtrnODR 
( ) and enter turning mode, where the bicycle will start turning in the desired 
direction. 
If the turning compensation value is changed significantly all at once from the remote 
control, the bicycle will fall over, so a limit is set so that the change value is no more 
than 50 bits in LtrnLIM( ) or RtrnLIM( ) once every 0.5 seconds. 
 

5.4.4 KsyaPID 

In the above section 5.4.1, 
2

K
V

･･･formula 5.9 is explained as PID processing, 

but there is no specific program that performs PID calculations. 
We will explain the actual state of PID processing of the lean angle of this bicycle. 
As explained above in Section 2.1, the angular velocity sensor section, and Figure 2.3, 
Sensor output waveform, the lean angle sensor of this bicycle has an output 
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waveform that is somewhere between that of an angular velocity sensor and an 
angular acceleration sensor, so if we think of it as an inclination angle sensor, the 
A/D converted output of the lean angle sensor, AD2_out_slope, AIN5_auto, or 
(102CH), is close to the differential value D of the lean angle. 
Also, since Equation 5.11 is the differential value of the actual amount of turning 
resulting from the handlebar angle calculated from the differential value of the lean 
angle, , it is a proportional action in terms of dimensions, and can be thought of as 
an integral action. 
When we first began developing this bicycle, we tried differentiating and integrating 
the lean angle, and then integrating it twice, and we arrived at this conclusion 
through trial and error. 
KsyaPID() adds the above differential, proportional, and integral values, adjusts the 
span, and passes it to RUDDER() as the correction value Slope_Val or (1048H), which 
is the numerator term in equation 5.12. 
 
5.5.5 RUDDER( ） 

Handle angle 
Correction value

2K
V

･･･Equation 5.12 

A calculation is performed and proportional control of the steering angle is performed 
based on the deviation of (steering wheel angle - steering wheel feedback). 



Chapter 6 Using the Debugging Function

Recording starts with the remote control UP button  (LED:  ON)

6.1 Overview of how to record driving data

Recording stops with the DOWN button on the remote  control  (LED: OFF)
Recording interval: Approximately every 100 msec
Recording capacity: Approximately 1 minute
Recorded data : Steering wheel operation amount
Recorded data : Incline value during automatic  operation

Photo 6.1 UP/DOWN button switch

You can use the debug function of the bicycle teaching material to  record driving 
data during automatic driving. Normally, you can  check the memory etc. with the 
debug tool connected, but you cannot  continue to ride the bicycle with the tool 
connected. Therefore, you  can temporarily record the driving data while driving to
 the memory,  and then connect the tool after stopping the driving to view the  
recorded driving data. We will introduce how to record driving data  using the 
sample program on the included CD.

The remote control sends commands to start and stop recording to the  bicycle while
 it is in automatic operation. The red and green buttons  on the remote control have 
already been assigned functions, so use  the buttons under the cover. To remove the

 cover, remove the two  screws at the top of the back side  (Photo 6.1). Then, lift the 
top  cover on the front side and it can be easily  removed. Of the four  buttons under
 the cover, the UP button starts recording  and the DOWN  button stops recording. 
The UP and DOWN buttons are used for the dump  function on the remote control 
board, but do not affect the signals  sent to the vehicle.



 Refer to the "Setup (ARM version)" manual on  the included CD and follow the
 steps  up to  "3.5 Writing and Debugging Executable Files."  Leave the sample 
program  written to the  vehicle. 2. Write the variables for recording. Open  the file
"ramed.h"  and  add four variables  by referring to image 6.1.

Image 6.1 Adding variables (ARM)

Image 6.2 Flag control (ARM)

 Write a program for recording.
Open the file "main.c" and write flag control in the DOWN command in the function

 'RC_Sbit( )' and in the UP command (Image 6.2). The DOWN command turns the  flag  
OFF, and the UP command turns the flag ON and the LED on the car body ON.



 Write a call to the recording flag check function 'REC_CHECK( )' in the
 function  'TIM10(  )' (Image 6.3). The function called in the function 'TIM10( )' is  
executed  every 10 msec.

Image 6.310ms call (ARM)

 Write the functions 'REC_START( )', 'REC_STOP( )', and 'REC_CHECK( )'
 below  the  comments for the 10msec routine processing (Image 6.4).

The function 'REC_START( )' stores data every 100 msec.
AIN5_auto stored in the variable LOG_SLOPE[ ] is the slope value data  during  
autonomous driving.
Hndl_val stored in LOG_HNDLE_VAL[ ] is the steering wheel operation  amount 
data.

Image 6.4 Recording control (ARM)



Data is stored approximately every 100 msec, up to 600 items,  allowing one 
minute of data to be recorded. If recording is stopped  with the DOWN button 
before one minute has elapsed, the data  recorded up to the point at which it  was 
stopped will be retained,  and when recording is resumed, data will be stored from 
the point  where it was stopped. After one minute has elapsed, the flag will  
automatically be turned OFF and recording will stop. If recording is  started again,
 the oldest data will be overwritten.

After writing the above program, rebuild everything and check that there are no
 errors. If there are no errors, connect the vehicle and the debug tool, download  and
 debug.

Check that the program is working properly on the debug screen. Display the

 live  watch  and register the four variables you added this time (Image 6.5). Press  
the UP  button while  the program is running to start recording. Use the handle  
volume on  the remote control to  change the value to be stored. Press the + button  
next to  LOG_HNDLE_VAL[ ] to check  the value. Press the DOWN button to stop  
storage  and confirm that the LED on the car  body turns off. Also, confirm that  
Log_cnt  increases while recording and Rec_flag is 1.

8. Once you have confirmed that the program is working properly,  prepare the  
recorded data so that it can be easily handled. Select  Break from the Debug  
screen to pause the program.

Display Watch 1 and 2 from the Display tab, and register  LOG_HNDLE_VAL to 
Watch 1 and LOG_SLOPE to Watch 2 (Image 6.6) (Image  6.7).

Image 6.5 Live Watch



Once registration is complete, stop debugging, turn off the power, and  remove  the 
tool. 9. Acquire data during automatic driving. Refer to  the driving instruction 
video and perform automatic driving. Pressing  the UP button just before driving 
will ensure reliable data recording. 10. After automatic driving has stopped, press 
the DOWN button to  stop recording. Please note that the recorded values will 
be erased if the vehicle's power is turned off.

 From the Project Options, select the Debugger Settings tab and uncheck Run to
 specified  location (Image 6.8).

Image 6.8 Debugging settings

Figure 6.6 Watch display Image 6.7 Watch Registration



Next, select the Download Debugger tab from the project options and  check Attach

 to program (Image 6.9). Checking the above allows you  to debug without resetting
 the target. After changing the options,  rebuild everything.

Image 6.9 Debug setting 2

Right-click on the Watch 1 screen and select Save to file (Image 6.11).

Image 6.11 Log save 1



)Graph 6.1 Driving record (ARM)

Similarly, save the Watch 2 screen.

You can save it anywhere you like (Image  6.12).
If you have not taken a record, please  refer to .

Image 6.12 Log save 2

The saved log file can be edited using Excel etc. The acquired driving data is
 shown in Graph 6.1. This graph shows data every 100msec, but you can change  
the  program to every 10msec or add turning values, pedal speed, etc. to the  
acquired  data.

 If no record is taken, please check steps  to  again. If no record is taken
 after checking, the vehicle board may have been reset. If you are using a J-TAG  
tool compatible with J-LINK, the target may be reset when connected.

Press the UP button, then press the DOWN button, and the LED on the  vehicle 
will go off. If the LED goes on after connecting the debug  tool with the LED  off, 
the vehicle board has been reset.



After connecting the debug tool to the PC, wait until it is recognized by the PC
 before  connecting it to the vehicle.

Please take the following measures:

If you are using a USB extension cable for your debugging tool, remove it.
Replace the vehicle battery with a new one.

If the reset still occurs after trying the above,  please use IAR's J-TAG tool I-JET or
 similar.

Assembly file output settings
Open the relevant workspace and open the project options. Next,  select the List 
tab in the C/C++ Compiler item. When you open the  relevant tab, the screen below
 will be displayed. Currently, the  "List file output" box is not  checked so that the 
assembly file is  not output. If you want to output an assembly file, please set it as  
shown below.

Image 6.13: Project Options List Screen

Next, select the List tab for the Assembler item. When you open the  tab, the  
following screen will be displayed. Currently, the "List  file output" box is 
unchecked so that the assembly file is not output. To output the assembly file, see 
Image 6.14 on the next page.



Check the box for the assembly file output setting, click OK, and then  rebuild. If 
there are no errors, the assembly file will be output to  the List folder in the Debug 
folder where the project is saved, as  shown in Image 6.15 Assembly File Status.

Image 6.14 Assembly file output settings

Image 6.15 Assembly file status

If you open the above file in a text editor such as Notepad, you can  see the  
program written in assembly language.



6.3 TLCS-900 version debugging procedure
 Refer to the manual "Setup (TLCS Edition)" on  the included CD and execute up  

to "3.5  Writing the Executable File". Leave the sample program  written to the  
vehicle.  Write the  variables for recording. Open the file "ramed.h" and add  eight
 variables referring to image 6.16.

Image 6.17 Flag control (900)

 Write a program for recording.

Open the file "C_JTN.c" and write flag control in the control functions RC_DN()
 and  RC_UP()  for the remote control's DOWN command and UP command (Image
 6.17).  The DOWN command turns the flag OFF and turns off the LED, and the  
UP  command turns the flag ON and turns on the car body's LED. Also, comment  
out  the integral enable flag.

Image 6.16 Adding variables (900)



The function 'REC_START( )' stores data every 100 msec. AD2_out_slope  stored in
the variable LOG_SLOPE[ ] is the slope value data during  automatic driving. 
Hangle_buf stored in LOG_HNDLE_VAL[ ] is the  handlebar operation amount 
data. Data is stored approximately every  100 msec, up to 600 items, so  data can be
 recorded for one minute. If  recording is stopped with the DOWN button switch 
before one minute  has elapsed, the data recorded up to the point at which it was
stopped will be retained, and when recording is resumed, data will be  stored from 
the continuation. After one minute has elapsed, the flag  will automatically be 
turned OFF and recording will stop.  If  recording is started again, the oldest data 
will be overwritten.



Describe the conditions for displaying the  
 data recording results. Press the UP button  on 
 the vehicle body board to display the
handlebar  recording value, and press the DN 
button on  the vehicle body board to display  the
 tilt  recording value  (Photo 6.2).
Modify the sample program's dump  function to
 include a flag for  recording data (Image  6.20). 

 Comment  out the DUMP() call and the
M_POINT  change from the sample program.
Also,  pressing the same button while each
result is being displayed will stop  the display
of the records. Photo 6.2 Body UP DN button SW

 Write a call to the recording flag check function 'RESULT_DISP( )' in the

 function  'TIM 100( )' (Image 6.21). The function called in the function 'TIM100( )'  
is  executed every 100 msec.

Image 6.20 Result display control



 Write the functions 'RESULT_SLOPE( )', 'RESULT_HNDL( )', and
 'RESULT_DISP( )' below the comment for the 100msec timer processing (Image 6.
22). The function 'RESULT_DISP( )' judges the flags set by the UP and DN  buttons
 on the vehicle board every  100msec. At each call destination, the address  of the  

array is stored in M_POINT. The function 'DUMP( )' immediately  afterwards  
displays the stored results on the screen. After the results have been  displayed 600
 times, the flag is cleared and the display of the results is  stopped.

After writing the above program, run the build and check that  there are no 
errors.  A warning message may appear, but this will not  affect the operation 
(Image 6. 23).

Image 6.21 100msec call

Image 6.22 Result display control



Image 6.23 Build result

 If there are no errors, connect the vehicle to the debug tool,  start  FD23Boot.
exe, and write the program. Use FD23Boot as is to  check that  it is working 
properly. After resetting the vehicle,  press  the UP button on the vehicle's board 
to display the recording  results. Since  no command to start  recording was issued
 from the  remote control, the  displayed result is "00"  in hexadecimal (Image  6 .

24).

In this case, the displayed results are read as follows: the first "100C" is  the 
variable address (the address may not be "100C"; see ).
 The first "00" after that is the storage result of the first address "100C", followed
 by  "100D", "100E", and so on. Also, the variable LOG_HNDLE_VAL[ ] displayed  
here  is of type int, so it is expressed in 2 bytes. Therefore, it is read as the  
concatenated  value of "100D" and "100C". 32 bytes are displayed per line, but to  
take into  account the work of creating a graph, the next line is displayed starting  
from the  address 2 bytes away.

Image 6.24 How to read the results

Check the starting address of the variable LOG_HNDLE_VAL[ ]. Open the
 map
 file "IDE_C.map" output by the compiler. If you are using an IDE environment,

 the  map file is located in the debug folder in the project folder (Image 6.25).  
Search for  LOG_HNDLE_VAL in the map file and check the address. In Image  
6.26, you can  see that the address is "100C". Also, the starting address of  
LOG_SLOPE is  "14BC". Press the DN button switch on the vehicle board to  
check that debugging  starts  from "14BC".



 Once you have confirmed that the displayed addresses and variables are
 correct,  reset the vehicle and check that the values have been stored. Press 
the UP button  on the remote control to start recording, and operate the 
handlebar volume for a
while. After a certain period of time, press the DOWN button on the remote 

 control  to stop recording. At this time, make sure that the LED lamp goes out.
Press the  UP button on the vehicle to display the recording results and confirm 
that the value  has changed (Image 6.27).

Edit the data to confirm the displayed values as numbers. This time, we are us-
ing
 Microsoft Excel 2010. Select the recorded value from the top and copy it (Image 6
.28). Open Excel and paste the copied value. Select Delimiter from the Data tab to 
 launch the Delimiter Wizard. Set it to separate by space (Image 6.29). Select Next,
 and in the Select Data Format for the Separated Column, select the first two in 
 the
 data preview and set it to text format. Select Finish to check the data (Image 6
.30).
 Erase the data after separation, leaving only the address cell column and the first
 data cell column.





As shown in image 6.31, convert the recorded data in column B to a  signed decimal 
number.
First, swap the two bytes before and after the recorded data.  Convert the swapped re-
sult from hexadecimal to decimal and  display the result in column C. The data con-
verted to decimal is  of signed int type, so if the  value exceeds 3 2767, the maximum  
value on the positive side, subtract 65536 to convert it to
a  signed decimal number. The converted result is in column D.
- Input formula for cell C3: =HEX2DEC(RIGHT(B3,2)&LEFT(B3,2))
- Input formula for cell D3: =IF(C3>=32767,C3-65536,C3)
You can confirm that column D is a signed decimal number from the  address
 value  "103C".
LOG_SLOPE is also of signed int type, so you can handle it in the same  way.
After confirming the operation, turn off the power to the vehicle and remove
 the debug tool.



 Acquire data during automatic driving. Refer to the driving instruction video
 and

After automatic operation has stopped, press the DOWN button on the remote
 control to stop recording. Please note that if you turn off the power to the vehicle,
 the recorded values will be erased.

Connect the debug tool to the vehicle and start FD23Boot. Press the UP button
 on the vehicle board to display the recorded data in LOG_HNDLE_VAL. Refer to 

 to prepare a signed decimal number. Once the handlebar value has been  
converted,  clear the display on FD23Boot. Press the DN button on the vehicle  
board to display  the recorded data in LOG_SLOPE, and convert it to signed  
decimal data in the same

You can create a graph using the prepared signed decimal data (Graph 6.2).
 This  graph  shows data for approximately 100msec intervals, but you can  
change the  program to change it to every 10msec, or add turning values, pedal  
speed, etc. to  the data you obtain.

Graph 6.2 Driving record (900)





7.1 What is an automatic  attitude control bicycle?



Figure 7.2

Combined center of gravity

Center of gravity mark



(2) Moving the fulcrum

To keep a bicycle from falling over, you only need to consider left -right balance, 

not front-to-back balance like with a unicycle.  (Figure 7.4, left) If the bicycle leans 
to the left or right,  balance can be maintained by constantly keeping the fulcrum 
under  the bicycle's shifting center of gravity. With a bicycle, the  fulcrum is not a 

single point, but a support line connecting the two  wheels. (Figure 7.3, center)

So how do we move the fulcrum (support line)? First, when the tilt sensor detects
 the  direction (right or left) and the degree of tilt, it quickly turns the handlebars  
in the  direction  of the tilt. Of course, just turning the handlebars is not enough;  
you can  move the support  line by stepping on the pedals and moving the bicycle  
forward. And  it has to get closer to  the support line faster than the speed of the  
tilt (the speed at  which the center of gravity  moves away from the support line).  
In the same way, the  support line will move quickly to  balance out the next  
change in tilt.

Cooking chopsticks

Figure 7.4



Carrier

Figure 7.5

Geared motor



7.5 Components
(1) Batteries: Four AAA batteries make the bike's heaviest part. The center of  
gravity is raised by placing it in the same position as the heaviest person on a  real
 bicycle

This is a key control part, and since it rotates reversibly, we need to consider an  
installation  method that will prevent backlash. Initially, we used a servo used in
 hobby  radio-controlled  cars (Photo 7.2). The reason for this is that: 1) the unit  

has a built-in  gear reduction device.  2) there is a potentiometer directly  connected
 to the output  shaft inside, which can be used  as feedback for control.  (The 
existing amplifier is not  used.) 3) a gear can be machined  and attached to  the 

output shaft, allowing the  handle shaft to be driven via the gear. 4) a  bearing  is 
inserted in the output shaft, so  there is little backlash.

As in the example in the previous section, heavy objects are elevated  to 
make lateral  movement easier.

When building such a  
prototype, using a radio-controlled servo  is one practical option. Toy  
manufacturers also use radio-controlled servos in their  prototyping.

Photo 7.5



Potentiometer

I removed the potentiometer and cut off the stopper on the output  shaft gear  so 
that it would rotate in one direction.



(5) Control Board

 

Thin (2, 3 mm) wooden board
Easy to process. Screws or wood screws are used to attach parts.

Aluminum plate (0.5 to 2 mm)
Easy to bend and drill holes. Also used for wheels.

Stainless steel pipe (inner diameter 2.1, outer diameter 2.5 / inner diameter 3.0
, outer  diameter 4.0)
Cut and use for front forks and tubes.

Brass plate (0.25, 0.8 mm: used for shims)
Used in areas that require precision and strength. Joined with silver solder. Silver  
solder can also  be used to  join other metals besides aluminum.

ABS resin plate (plastic plate 1.0, 1.5, 2.0 mm thick)
Easy to cut and bend, and uses a special adhesive.







Plastic Gear
Even if you use the reduction gear inside the servo, the torque transmission
 between  the  output shaft of the servo and the drive shaft of the handle, etc. will  
ultimately  be  done by  gears. Normally, for this size, a plug gear with module 0.5  
is used. If the  module is 0.5,  any manufacturer's gears can be combined. The  
combination used  here  is a  spur gear,  but there is also a worm gear. The  
reduction ratio can be 1:10 or  more, but the  transmission efficiency is poor and  
the torque generating axis of the  worm and the mating  axis are perpendicular,  
making the bearing structure difficult.  This combination of spur  gears also seems  
to be good for a reduction ratio of up to 1 :5 per pair. Since the final  reduction  ratio
 from the motor to the drive shaft is 1:64 to 1 :150, a combination of 3 to 4  stages 
can be used. If the reduction ratio of one pair is  increased, the distance  between  
the two parallel shafts will also increase, and one of  the spur gears will  become 
larger,  making it difficult to work on the frame or wall  where  the  bearings are 
located. Regarding  the bearings for the gear shaft, if the plate  thickness (in the 

case of brass) is 0.3 mm or  more, it is fine to just drill a hole (  1 to 2 mm), but 
when it comes to the output shaft of the  final stage, the shaft diameter  becomes 
thicker and a force is applied in the thrust direction . If the plate  thickness is  0.8 
mm or more or is a thin plate, the shaft should be supported  by  a  metal bearing  
or  bearing.

Stepped Collar Flanged bearing

Figure 7.9
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