Learning tasks using bicycle teaching materials

First edition September 25, 2018

Tamaden Industries Co., Ltd.

Chapterl About the VehiC].e bOdy .. 1

1‘1 car body Structure ... 1
1.1.1 Caster angle . trail . Offset ... 1
112 Wheelbase ... 1
1'1‘3 Center Of graVity ... 2

12 handle 0070170) SRR R R R R 2
121 Handle motor Specifications ... 2
1.2.2 Relationship between handle angle and encoder -« xorerrerreereeeeeees 3

1.3 Pedal motor specifications and driving performance «««-««-oomrrser 5

1.4 Anti'VibI'ation TNLEASULTES =t vt v vt rr sttt s ettt ettt ettt ettt ettt 6

Chapterz Board mounted devices .hardware .. 7

2‘1 angular Velocity [T 0110) AR R R EEEEEEERRRETE 7
2.1.1 Principle of vibration type angular velocity sensor- principle- problem <+ 7
2.1.2 Output characteristics of vibration type angular velocity sensor ««---«-«--wooeoeeeee 7

2.2 Serial DAC IC2-1C4 (900 version) IC3:1C4 (ARM version) -« -ssrrrrrrmeseseeeee. 10

2.8 Analog (Op amp) CITCULT v v e e e e e e 11
231 rail to rail o) 3z 0111 o B R LR R R RERERERRR 11
2'3‘2 Op amp Circuit .. 12
2'3‘3 Analog Circuit Configuration ... 13

COlumn 21 brushed dC 0010170) SRR R R R R R 17
COlumn 22 Various 0010170 0 R R R R R R PP RRPPEE 18

2‘4 PWM ContI‘Ol . H brldge driver ... 21
2.41 PWM Control ... 21
242 H_bridge Operation ... 22

2‘6 remote COntrOl llght receiving module .. 24
2'6‘1 OVerVieW Of].].ght receiving module ... 24
2.6.2. How to use the remote control receiver module -« ---vreerreerrreeenn 25
263 remote Control transmitter .. 25

2‘7 three terminal regulator .. 27
2'7‘1 What iS a three-terminal regulator ... 27
272 HOW to use a three_terminal regulator .. 27
2.7.3 How to use a three-terminal regulator (advanced version) ««=----woooosereee. 28

28 About A/D . D/A ConVerSion ... 29
281 What IS A/D . D/A ConVerSion .. 29
2.8.2 Specific example of A/D * D/A CONVErSion part 1 -««-«-w-wrerremmemmrmeanss 30
2.8.3 Specific example of A/D * D/A CONVErSion part 2---«--«--wxwrermemmemraeaans, 31

COlumn 23 Sample hO].d ... 32

COlumn 24 multiplexer .. 33

Chapter3 Embedded Core CPU .. 37

3.1 TLOCS — 900 ATCRILECEUIE - v e rerrrrerreneen ettt 37
3.1.1 Features of TIUCS-Q()() «« -« xrxerrrerrrrernentnntnattnat ettt ettt etaaetaenee 37
3.1.2 TLCS-900 register ConfigUration ««««+ «««rrt s ettt 39
3.1.3 TLICS = 900 IN@rTUDES ++ v rwrrrrsssssssmsssssiitttttsss sttt 49

COLUIMN 8.1 IIEETTUDE v« v vvrresssss s seserrrt ettt s s sttt 43
COLUITN 3.2 20MIPS WALl +++ v v eerrrrrrerenenmeneeantnet ettt ettt ettt 44

3.2 ARM QTCRILECLUTE v rrrrer e e eeee ettt et et ettt et et et 44
3.2.1 HISEOTY OF ARV -+« vrressmeeresessssiittt sttt 44
3.2.2 ARM Sales SEPate@y «++ rrrrrrrrrressssmm ittt 44
3.2.3 Semiconductor manufacturer sales MeEthod -« - -« e 44
3.2.4 ARM architecture details -« e e rerrrrmrrmrmmeneeeeet ettt 45
column 3.3 About 10w POWEr COMSUIMPEION «++++r+rrrrrrrrrrrrrrrrrrrrr 48
cOlumMN 3.4 ADOUL CIVISIS «- v v errrrrrrrenentttat ettt ettt ettt 48

3.8 ADOUL dEDUGEING «ww v+ + rrrress s ere et sttt 49
3.3,] SWID OVEIVIEW +# v vv e rrrereneesensnestaet ettt ettt et et e ettt et et ettt et et e 49
3.3.2 Selecting a debug Interface ««««««+++++ ettt 49
3.3.3 TrACE FUTICELOIL ++ ¢ e rrrrrrremrem e eenee ettt et ettt ettt ettt et et et et ettt e e e en e 49
3.8.3.1 AbOut ETIVL Eraciig <+ «vrrrssreerrrsssmmsrsrsssmiiitttss ittt 50
3.3.3.2 ADOUL SWV EraCIIg ++ v errrrrrrssssssmmmssssssttt et ts st 50
3.3.4 Limitations of real-time debugging <+ -+t s orrressmmmrrremii 51
Chapterd Program StEUCHUEE -+« rrr s rrrrts s ittt ittt 592
4.1 £ASK COMEIOL v rr v rrrererreeeees ettt et et et ettt et e ettt e ettt e 59
4.1.1 Traffic light control with single tagk «======- e 59
4.1.2 Traffic light control by multitasking «««--orrrrreesrm 54

4.2 PLOGTAIN SEIUCEUTE ««wr++ e rrrtss s s err e et ettt 58
4.2.1 Primitive multibasking «-ooorrrreesssmm e 59
4.2.2 task MANAGEIMEIIE «++ e ettt 62

4.3 Assembler and C compiler Behavior -« xxwrrrrsssssmmmiiiiiiii 63
4.3.1 Arguments and return values (1) verrrerr e 63
4.3.2 Arguments and return values (D) +voverre 65
4.3.3 Type CONVErsion by CASTIIG <+ ++ ««rrrt s rrrrrssmsirtttss ittt 68
4.3.4 ATTay deSCTIPEION <+ ++ e e s e et t e st sttt 70
Chapter5 Bicycle Control ArChiteCture <+ ««««+++ rrrrtss sttt 79
5.1 Initialization of analog VALUES «««««r s e rrrsss sttt 79
5.1.1 drift COrTECtion NATAWATE <« - r e rrrrrrmrmmemreeete ettt et 79
5.1.2 DTift COrTECEION PLOGIAI ««rrr+++s s s srrrresstsss sttt ettt 73

513 Notes on drift correction .. 74

5‘2 handle Operation .. 74

5.2.1 Handle CONEIOL OVEIVIEW -+« +rrrrrrmrmmrneeneeetet ettt 75
5.2.2 ON-OFF control and proportional control <« «xeerrrrrrresssnii 77
5.2.8 Proportional COMETOL -+« «««xrrtsssssssmsssiirttttttt ettt 77

5.8 DAl COMETOL «++rr++++ s+ e esre ettt 78
5.3.1 Pedal CONLIOL OVEIVIQW - +rrrrrrrrrrrrreentnestntt ettt ettt ettt ettt 79
5.3.2 Pedal speed SEHtImgs ««««««wrrrt s s sttt 79
5.3.3 Pedal motor Speed Measurement <+ «---xrt s sttt 30

5.4 automatic attitude COMEIOL -+« e e e rrrrrn ettt e et 30
5.4.1 force acting on the DICYEle ««+++++++ rrrrrrrrrtaratiiiiii 81
5.4.2 Straight ahead COTTECHION ««++++++++ e rrrrrrrtsss s ittt 33
5.4.3 Operation USINg remote COMEol «««+ ««rrrt rerrrtrniiiitiiii 33

5.5 Attitude CONTIOL PrOGIam ««««wrr s s s reerrrrrtttts sttt 33
55.1 V2_SCAL() ... 83
5.5.2 TRNrate() .. 84
5.5.8 TUTTIPIII() ++rvvvreeeeemmneeee ettt 84
B.4.4 TKSYAPTID ««vrrreeeesssss sttt ettt 84
5.5.5 RUDDER() e 85

Chapter6 Using debugging fUnCtions -+« ««««r++ s srrrsssmmirtttnsiiii i 36

6.1 Overview of driving data recording method -« e 36
6.2.1 Debugging steps for ARM version <+« --rtss errrtssmimrteniiii 87
6.2.2 How to output assembler file in ARM version <« -+ - - -soreeeresssssmiiiiiii 93

6.3 Debugging procedure for TLCS-900 VerSion «««««««+++++ s rrrrrrrrtttaaniiiii 95

Chapter7 Bicycle body production ««««««+- -« «rrt s sttt 104

7.1 What is an automatic posture control bicyele =+« rrreemmrri 105

7.2 Center of gravity and FULCEUIM «-««««r s s rrrrrss sttt 105

7.3 Scale Tatio ANd @CCUTACY «««wwwr s s s e rrr e sttt bbbttt 108

7.4 Stiffness and weight reduction <+ e 108

7.5 COMPONENE DALt +++++ e e reersssss s sttt t ettt 109

7.6 Radio CONEIOL SErVO SEOIY «««wwrrr s s s rssrrrstt sttt 114

77 SETVO TOAIFICATION +++ v e e rererrrreenreaenet ettt ettt et ettt ettt et et et ettt 115

7.8 How to obtain parts and materials <+ -----rrss sttt 117

7 O TOOLs T WASH T RAd -+ cvvverrrrrrrerereen ettt ettt et ettt et ettt ettt 117

1.1 Vehicle structure

Chapter 1 About the vehicle body

1.1.1 Caster angle/trail/offset

offset

The front wheel od the bicycle has caster angle,trail,

caster angle

Figure 1.1

caster angle :

also increases the trail.

and There are three elements of offset,and each element
is Together,they affect driving performance.Figure 1.1

This is the angle of inclination of the front wheel fork. Increasing the caster angle

trail :The distance between the grounding point of the wheel and the point where the extension
line of the handle fork axis intersects with the ground. It is said that the longer the trail, the better
the running stability and the more hands-off driving becomes possible.

offset .Distance between handle fork axis and wheel axis. Due to the relationship between the offset
and the caster angle, a force is generated that tries to return the handle toward the center.

If you search the internet or literature, you will find many explanations about the three

elements of the handle. However, the handlebar of this bicycle is operated electrically,
so stability and restorability are not required.
On the other hand, if there is a trail, the moment you move the handle electrically,

the handle fork axis will move left and right, causing vibrations in the bike, so this bicycle
has a trail distance of zero. In other words, the extension line of the handle fork axis is the
grounding point of the front wheel. Trail = 0 is an important item when designing a bicycle

whose handlebars are operated electrically.

1.1.2 Wheelbase

5

Lo

caster angle
-

[
©

Byl
e

==

\\

\

l

i

<

The distance between the front and rear axles is
called the wheelbase. Figure 1.2
Wheelbase, steering angle and turning angle
The relationship is as shown in equation 1.1.

turning angle =K

handle angle

Wheelbase

- +« Equation 1.1

In other words, the shorter the wheelbase,

the better the steering will be.If the wheelbase
is lon g, such as a tandem two-seater bicycle,
the bicycle will not be able to turn easily.
Also,since a long wheelbase results in poor
maneuve rability,the speed at which the setting
wheel can be moved (steering speed)is also

rewuired.

1.1.3 center of gravity

The higher the bicycle's center of gravity is, the longer the natural period of sway will be,
resulting in more stable riding.

/h
Natural period of shaking 1=27 g ...Equation 1.2
h is the height from the ground to the center of gravity

When making a bicycle body by hand, if the wheels and frame of the body are made of material
with a high specific gravity, the entire body will feel heavy, and you cannot expect it to
ride very well.

summary
The design points of electric bicycles are

trail. 0 .short wheelbase .center of gravity is high

Let's try 1.1

As shown in Photo 1.1, by attaching a 30cm ruler to the battery
I . case in a Yajirobee shape to raise the center of gravity and
it giving it the Yajirobee effect, the bicycle's running.characteristics
- change.
' I think it would be interesting to try using weights other than

a ruler.
- It is also possible to add a flight wheel to this position to control
« - the rotation speed, as in a more advanced version of the
photograph 1.1 “Murata Seisaku-kun."

The current board only controls the steering wheel and pedals, but it is also possible to prepare
a board that can also control a third actuator. (The shape is slightly different.)

Note 1: The metal electrodes are exposed on top of the battery case, so placing conductor weights
directly on top of the battery case will cause a short circuit in the battery, which is dangerous.
Please insulate.

1.2 handle motor
1.2.1 Handle motor specifications

The handlebars of automatic posture control
bicycles are operated by a DC brushed motor
(Photo 1-2) with a built-in gear head and
incremental encoder manufactured by Citizen
Micro Co., Ltd. Motor specifications are shown
in Table 1.1, Table 1.2, and Figure 1.3.

photograph 1.2

sys2
四角形

sys2
四角形

rotation

torque

Model 1G-10GM-PW1705A-06 |Reduction ratio |1/64
Rated voltage 6 (V) Rated current [125 [mAJ or less
Output shaft 163+28 (rpm] Output shaft 7.35 (mN-m]

No-load rotation

203+30 [rpm]

No load current

90 [mA) or less

speed

Table 1.1 Motor part specifications

12 [P/R] 12 pulses per motor rotation

20KHz

90 °
DC3[V]to DC24[V]Current consumption10[mA] or less

Number of pulses

maximum response frequency

output channel phase A phase/B phase voltage output

power supply

Table 1.2 Incremental encoder section specifications

1 motor @ ()

Vee

2 o
A phase ¥
o PASC

3
4 oDBophase i

exs (]|

connector LF
5 GND

motor ©

<
=
p=

A

6 (o2

cable | motor

Figure 1.3 Handle motor cable connection

1.2.2 Relationship between handle angle and encoder
The handlebars of automatic posture control bicycles can move approximately 70 °
left and right, for a total of 140° .

The handle and handle motor are connected with a gear ratio of 20:34, so the rotation

20

34 =238°

angle of the handle angle motor is (70° + 70°) X 34

The encoder outputs 12 pulses per motor rotation, so the encoder pulses for a

238
steering wheel angle of 140° are 12 X 64 X 360 — 507.7pulse

L Motor output shaft rotation rate

gear ratio

Number of pulses per motor rotation
Figure 1.4 is the encoder output waveform of the handle motor.In order to improve the

encoder resolution, this bicycle's control program samples the B-phase rotation angle
at the rising and falling edges of the A-phase encoder pulse, and obtains twice the

normal count value.Using = 507.7 counts for a handle angle of = 70° , handle angle

control with a minimum angle of 0.14° is possible.

rising edge Falling edge
\ \

A phase ———— L
|
|

|
b L LT

Figure 1.4 Encoder output waveform

< Let's try 1.12

Let's observe the output waveform of an incremental encoder to understand how it
works.

Things to prepare: Automatic posture control bicycle, remote control, oscilloscope
(one that can stop the image), 2 oscilloscope probes
Observation method: Observe the waveform between Pin 3 (A phase) and Pin 4 (B
phase) of the handle motor connector CN4 and GND. The vertical axis of the
oscilloscope measures 2V/div, the horizontal axis measures 2ms/div, and a normal

single trigger. Turn on the power to the bicycle and remote control, and perform the

work in the following order.

Observation method: Observe the waveform between
Pin 3 (A phase) and Pin 4 (B phase) of the handle
motor connector CN4 and GND. The vertical axis of
the oscilloscope measures 2V/div, the horizontal axis
measures 2ms/div, and a normal single trigger.

Turn on the power to the bicycle and remote control,
and perform the work in the following order. (D
Connect the ground leads of the two probes to the
GND check pin on the board using pin clips. Photo 1.3
@ Remove the hooks and tips of the two probes and
touch pins 3 and 4 of CN4 directly with the probe
contacts. Photo 1.3 (@ Use the remote control to move

the handle slightly to the left or right and observe the

—=# A-phase and B-phase waveforms at the same time.
PhOtO 1.4 PhOtO 1.4
Note: Divide the work among multiple people: the person holding the probe, the

person operating the remote control, and the person operating the oscilloscope.@
Operate the handle left and right to observe the waveforms of phase A and phase B.As
shown in Figure 1.5, when steering to the left, phase A lags, when steering to the
right, phase A advances, and as the steering speed increases, the frequency of the

output wave increases.

A phase

| [

left steering right steering

B phase

Figure 1.5 Encoder output phase waveform

1.3Pedal motor specifications and driving performance
Automatic posture control bicycle pedal motorDong Hui
motor Industrial co.,Ltd(Built-in gear head and
incremental encoder made in ChinaDCBrushed motor

(photo)1.5)is. Show motor and encoder specifications1.3

Figure the connection diagram1.4It is shown in .

photograph1.5 Comes with brush for brushDCMotor

mold GM12-N20VA-09220-150-EN Reduction ratio 1/150

Rated voltage 6 (V) Rated current 120 (mA)

Rated rotation speed 11700 [rpm] Motor rotation Motor shaft torque 2.5 [g-cml]

No-load rotation speed 15000 (rpm) No load current 28 [mAl

Encoder pulse 3 (P/R) Output channel | 90° phase A phase B phase
Encoder power supply | 3.5 [V] ~ 20 [V] Power current | 5 [mA] ~ 10 [mA]

tablel.3Pedal motor/encoder specifications

Other numbers regarding the running performance of bicycles are as follows. Rear
wheel external size: 75mm

Motor output shaft pulley diameter: 22mm

Rear wheel side pulley diameter: 20mm

75 when the rear wheel rotates oncemmxmn=235mmThe vehicle moves forward. In order
for the rear wheel to rotate once, the motor must

20
—x150136 It rotates and the encoder pulse outputs 409 pulses.

409pul
When the bicycle travels lmgx 1000mm=1741 A pulse is detected.

35mm

Since the pedal motor is designed for forward movement only, the encoder uses only the A phase to
calculate speed.

This vehicle speedVThe number of pulses proportional to the handle angle p for automatic attitude
control is calculated as shown in equation 1.4.

. tan@
K=

+++formula 1.4

motor @
W

motor ©

10

GND

CN5
<:| [__\: A phase

B phase
6 p

figure1.6 Pedal motor/encoder connection diagram

1.4Anti-vibration measures

Automatic posture control bicycle has photo sensors that detect tilting and turning1.6 It is installed on the
control board as shown in the figure.

This sensor is easily affected by vibrations transmitted by wheels and motors, and vibrations become
electrical noise, which causes large errors in attitude control calculations.

However, if you increase the amount of vibration isolating material to an extreme in order to eliminate
vibrations, there will be a time delay in the sensor's response to actual tilting or turning, making it impossible
to control the attitude.

For this bicycle, the entire control board with the sensor installed is photographed.1.71t is lifted from the car
body using alpha gel vibration damping material with double-sided tape.

Turning angular velocity
sensormaterial
P o

a gel vibration damping

Tilt angular velocity Photo 1.6 Sensor Photo 1.7 a gel vibration isolation material
sensor

Chapter 2 Board mounted devices/hardware

2.1langular velocity sensor

2.1.1Principles, usage, and problems of vibration type angular velocity sensors

The Murata Manufacturing Co., Ltd. angular velocity sensor
(ENC-03 Ro-R) used this time is a vibration type angular
velocity sensor.

Vibrating bodies, pendulums (Foucault's pendulum),
spinning tops (mechanical gyro), etc. try to maintain their
current absolute angles. For example, as shown in Figure

Figure 2.1 Absolute angle
ofEarth Sesame

2.1, when a globe placed on the earth is viewed from space, the axis of the top remains in the
same direction regardless of the rotation of the earth, but when viewed from the earth's
coordinates, the top's axis changes by the angle of rotation. The axis is moving. This is a
gyroscope.

In the case of a vibrating gyro, which operates on a principle similar to Foucault's pendulum, the
piezoelectric vibrating body tries to maintain its current absolute angle, but when an external
force with an angular velocity is applied to it, a Coriolis force proportional to the angular velocity
acts. Masu. A vibration-type angular velocity sensor is a sensor that generates a voltage
proportional to this Coriolis force.

However, the output signal of this angular velocity sensor is Drifts affected by temperature
changes are large Also vibrates the sensor30kHzContains a lot of noise before and afterTherefore,
some ingenuity is required in order to use the angular velocity signal output from the sensor.

Idea @ Low pass filter

Amplify the sensor signalOPAmplifier (schematic diagram)OP02 -OP03)On the negative feedback
side1000pFA capacitor applies feedback to suppress the amplification of high frequencies,
creating a low-pass filter.

Idea @ Automatic drift correction

Tilt angular velocity sensor signalOPAmplifier (schematic diagram)OP01-OP02-OP03)DC analog
amplification is performed by several hundred times.

In order to correct the drift of the angular velocity sensor in this DC amplification, the serial
inputDAC (Digital to analog converter)IC2usingCPUThe analog input (P51/AN1)The center of
the signal is within the analog input range (0V~3.3V)Near the center of (1.65V)so that it
becomesCPUOutput the correction value from the program from the side.OP02ofFourAnalog
addition is performed at pin No. 3 to cancel the drift.

Related pages: [2.2serialDAC” [5.1.Initialization of analog values”

2.1.20utput characteristics of vibration type angular velocity sensor

Vibration type angular velocity sensor (ENC-030-R)Photograph the outline of2.1Shown below.
This sensor i1s2To reduce interference between each sensor assuming that it will be used in an
axis2Two oscillation frequencies are available.

mold given name Oscillation frequency

ENC-03RC-R 30.8kHz

ENC-03RD-R 32.2kHz

Next, we will explain the rotation angle and analog output of this angular velocity sensor. Diagram on
angular velocity sensor2.2Diagram when giving a rotation angle like2.3You will get a sensor output

like this.

TG W)

Photo 2.1 Angular velocity ensor

/ N
AN

CW(+) %3 CoW (=)
\ < /
\é_/

AN /

Figure 2.2 Sensor rotation direction

As shown in D in Figure 2.3, perform constant angular

velocity movement up to a rotation angle of 180° , then

stop for a certain period of time, perform constant angular
velocity movement in the opposite direction with a rotation

angle of 360° , and after stopping for a certain period of

time, return to the original position at a rotation angle of
180°. It returns with constant angular velocity motion.

At this time, the angular velocity is (2) and the angular
acceleration is (3, but the analog output of the (4) sensor
has a waveform that is halfway between the angular
velocity and angular acceleration.

This sensor's analog output saturates when constant angular
velocity motion continues (1 to 2 seconds), so it is not
suitable as a control sensor for large bicycles (such as 26-
inch models) that have a slow inherent shaking cycle.

+180

@ Angle /—\
-180 v

@ Angular | | ’

velocity

® Angular

acceleration /\—\/—\/ \/
@ Sensor output /\ [\—[\']

Figure 2.3 Sensor output waveform

<> Let's try 2.1 Let's check the characteristics of the angular rate sensor in the order shown
below. In the case of tilt sensors, the OP amplifier 3 output pin 1 is the easiest point to see.

(1) Turn on the bicycle and remote control and warm up for about 10 minutes.
(2) Press the stop button switch on the remote control to perform automatic drift compensation.

(3) After the flicker stop of the L1 lamp, apply the oscilloscope probe contact directly between
Pin 1 and GND of OP amplifier 3 and observe the output wave while rocking the bicycle. At
this time, care must be taken to ensure that the probe contact does not deviate from the first
pin of the OP3. If the probe of the OP3 Pin 1 seems to be difficult to hit, a check pin can be
installed. Now that the DIP components are gone, even a board modification such as adding a
check pin requires a little technology.

OPamp 3 1st pin land shown in photo 2.2 to photo 2.3 at 1.5mm square ¢ Solder a check
pin with a 1mm hole as shown in picture
2.4.

The hook tip of the probe can now be

connected, but the land is not very

Add check
pin here. strong, so be careful not to apply strong
force and measure.
Photo 2.2 Check pin on OP3
Photo 2.3 Check pin Photo 2.4 Check pin installation completed

2.2 Serial DAC IC2, IC4 (900 version) IC3, IC4 (ARM version)

The control board for this bicycle uses the Analog Devices se-
; rial interface DAC AD5611BKSZ (Photo 2.5). Its main speci-
fications are shown in Table 2.1.

Photo2.5 Serial Interface DAC This serial interface is
connected to the CPU via

synchronous serial

Item Contents R
- communication, and outputs
power supply 2.7V to 5.5V Current consumption 100pA . . .
‘ the automatic drift correction
Conversion Accuracy 10bitDAC value of the angular rate
DA output voltage 0V to VDDRL=2kQ Rail-to-Rail sensor calculated in the CPU
DA output voltage 0.5V / us to the adder circuit of the
- . sensor amplifier circuit,
DA conversion method Resistor string method . .
automatically correcting the
ial Clock .
Serial Cloc S0MHzmax drift of the angular rate
Table 2.1 Specifications of AD5611BKDZ sensor. See Sectlon 2'3_3‘

The timing diagram for serial synchronous communication is shown in Figure 2.4.

When SYNC is LOW, data is active and data is read at the falling edge of the clock
SCLK. Data is read from the MSB side, and after the LSB is read, it is output to
the DAC register.

sex /S S S
|
|

D14 K?j}(p2 X bt X o pi5 X D14

SDIN p15_X

Figure 2.4. Synchronous communication timing diagram

The technical details of the resistor string DAC, R/2R ladder DAC and ADC will be
explained later.

10

2.3 Analog (op-amp) circuits
2.3.1 Rail- to -Rail Op Amps
uses the Analog Devices op-amp AD8515 (Photo 2.6) . This
op-amp is a very easy-to-use element that has rail -to- rail
' input and output and can operate on a single power supply.
Here, we will first explain the input and output operating
ranges, which are the basis of how to use an op-amp.

Photo 2.6 Operational amplifier

AD8515 Input side operating range:

ee A typical input circuit of an operational amplifier is a

differential amplifier circuit as shown in Figure 2.5 .

ouTt ouT2 In this circuit, the input Vin requires a level that is VBE
Vini o_(;1_° Vin2 (dead band of approximately 0.6V) higher than VEE, and
since there is at least a loss (dead band) on the Vcc side
due to the current mirror circuit, the operating range of Vin

%V?EE . is between (Vce - dead band) and (VEE + dead band) .

Figure 2.5 Operational) .
o o Output side operating range:
amplifier input circuit) o o
A typical op amp output circuit is a complementary circuit
Voo as shown in Figure 2.6 . In this circuit diagram, the output
voltage swing range is (Vee-V BE) to (VEE +V BE) .

As you can see, even if we look at only the input and output

VBE circuits, we cannot simply use the full power supply
IN ouT
voltage.
VBE

- DC amplifier with multiple stages of transistors directly

connected , voltage losses occur in circuits other than the

VEE input and output circuits as well . As shown in Figure 2.7,
Figure 2.6 Operational the operating range of a general-purpose op amp is (Vce -
amplifier output circuit 1.5V) to (VEE + 1.5V) .

Op-amps that can be operated with a single power supply

Voo can be used up to the full power supply voltage on the lower
LSV L5V side, but there is a non-usable range of about 1.5V on the
TR | SRR LMol Ve side .
T AN AN Rail -to- rail (full to full) devices use the full power supply
y L5V voltage, but there are also elements that are rail -to- rail
EE

General purpose Single power rail to rail on the output side only and rail -to- rail on both the input

Figure 2.7 Operating range of and output sides , so please check the specifications on the

operational amplifier data sheet when selecting elements.

11

2.3.2 Operational amplifier circuit

This section provides a general explanation of the operational amplifier circuit used in
the control board of an automatic attitude control bicycle.

Vin
\— - Vout
———+—0
o—I+

Figure 2.8 Follower circuit

Ri I Rf
Vinl o AN AN
R Iz
Vin2 o ANV ® - u _V%ut

r +
Addition is performed based on A,

Based on A —L is inverted amplified.
1
Figure 2.9 Adder circuit

Ri1 VR Rf
10K 10K 200K
Vin o A%, aaaY ANN—
100|0PF
|
)
Ci
B Vout
0

+

-

Figure 2.10 iterative amplification

« Follower circuit (Figure 2.8)

When using an operational amplifier with
negative feedback, the input terminals (-) and (+)
are virtually shorted and have the same potential.
The follower circuit feeds back 100% of Vout to the
(-) input terminal, so Vin = V(-) = Vout, and the
amplification degree is 'T', which is non-inverting
amplification.

Followers are used to convert high-impedance
circuits that cannot absorb energy into low-
impedance circuits that can conduct current.

- Addition circuit (Figure 2.9)

Since point A of the output of the adder circuit is
virtually grounded,

Vout=—Rf(]l+]2) - - -formula2.1
_ V. V.

=R, (_IL;I'L—" _]Léil) -+ -formula2.2

R = R, Under the conditions of
R,
:_? Vir TVi2) -+ -formula2.3
L addition
Amplification

Addition in equation 2.3 is performed based on A
point.

The virtual ground potential of cA can be changed
arbitrarily by changing the potential of the input
terminal (+).

- inversion amplification

Figure 2.10 shows an inverting amplifier circuit
with VR for variable amplification and capacitor
C1 for high-cut filter. The amplification factor can
be varied from 10k/10k=21 times to 200k/20k=10
times.

For filter characteristics, calculate the frequency
where Rf=XC1.

1
=R, R - -Find f from equation
27 fe 2.3.

Y e

= 800Hz- - -formula 2.4

The filter effect starts to appear around 800Hz.

,12,

2.3.3 Analog circuit configuration

Analog amplify the angular velocity
sensor signal from Section 2.1 using
the operational amplifier described
in Section 2.3 and input it to the
ADC built into the CPU.

The magnitude and characteristics
1 15V + of the signals handled by this
50mV ’

3V —— 3V

analog amplifier circuit are
135V v explained using Figure 2.11.

—T_

Figure 2.11 Analog signal size amplification sensor output voltage

Reference output: 1.35V+0.15V
+0.15V is the output change due to temperature drift, etc.

Sensor signal: The maximum change level of the output signal when the bicycle is

running is about 50mVP-P. The sensor signal contains a lot of 30kHz carrier noise and
vehicle body vibration noise.

CPU analog input

The analog input range on the CPU side is 0 [V] to 3 [V], so the best situation is for the
signal to swing by a maximum of +1.5 [V] around 1.5 [V].

.".This sensor signal amplifier must be designed to comply with the following items.

- £0.15V temperature drift countermeasure

+ DC amplifier with an amplification factor of about 100 times

- Noise countermeasures

The operation of this amplifier will be explained using the analog circuit diagram for tilt
sensor shown in Figure 2.12.

follower additive
3v amplification
T amplification
. n N Rf
A A
sensor + 20K 200K AT
OP1 I
1 "
i Ct I
R2 ,\ c2
- R4 .
/;/0\}? AN '\ analog input
+
10K
3V + ADC
oP2
20K < R5 oP3
CPU
N .
20k< re virtual signal zero Automatic
162 drift
K correction
Serial serial
DAC output

Figure 2.12 Analog circuit schematic diagram

13

+ Follower OP1
Since the output impedance of the sensor is high, a follower amplification is installed to
lower the impedance. If the input resistor R1 of the summing amplifier is connected
with high impedance, an error will occur in the summing operation.

+ Additional amplification OP2
The sensor signal passed through the follower and the automatic drift correction value
output from the CPU are added here, and the center of the angular velocity signal is
adjusted to a potential near the center of the amplification range.

+ Serial interface DAC IC2
ADAC (AD5611BKSZ) connected to the CPU via synchronous serial communication
converts the automatic drift correction value into digital to analog and passes it to the
summing amplifier.

* Virtual signal zero
Using R5 and R6, connect 1.5[V], which is obtained by dividing the 3[V] power supply, to
the (+) terminals of OP2 and OP3, and set 1.5[V] as the signal zero of this amplifier
circuit, 1.5[V] £1.5[V] is the amplification range.

+ Amplification OP2 - OP3
OP2 is a 10x fixed gain and OP3 is a variable gain amplifier circuit.

Capacitors C1 and C2 are attached to the negative feedback side to form a high-cut
(low-pass) filter.

+ Automatic drift correction
A correction value is calculated in the CPU so that the average value of the analog input
to the CPU is around 1.5 [V], and is output to the OP2 adder circuit via the serial DAC.

OTry it 2.2

Let's understand the basic operation of an operational amplifier.

We will explain operational amplifier feedback using the most basic inverting amplifier
circuit shown in Figure 2.13

W
Vin il R1 R2 An operational amplifier amplifies the
v l voltage difference between the input (-)
—oVout and (+) terminals by more than 100,000
times, so if you apply feedback from Vout
to the (-) terminal with R2 as shown in
Figure 2.13, the (-) terminal and (The
circuit is balanced when the potential
difference between the +) terminals
disappears.
When the circuit is balanced, the
potentials of the (-) and (+) terminals are
Figure 2.13 Inverting amplifier circuit equal. This is called virtual ground or
virtual short circuit.

When the circuit is balanced, the potentials of
the (-) and (+) terminals are equal. This is
called virtual ground or virtual short circuit.

14

This is virtual
grounding.

Vin= 10V]
O)

| set the input
to 1 V1.

If Figure 2.13 is represented as a seesaw
When the output drops to -3 [V], the diagram of the resistance ratio of R1 and
@ | () terminal becomes 0 [V]. R2, it becomes as shown in Figure 2.14.
Since the (+) terminal is grounded and
has 0V, the (-) terminal must also be
grounded at OV. It works in order.

10kQ] 10(kQ]

Vour = —30V) In order to confirm the basic operation of
an operational amplifier, let's create the
operational amplifier test circuit shown

R R R in Figure 2.15 on a bullet board and

measure the input/output characteristics

V. and frequency characteristics.

0 The operational amplifier used in Figure
\ ® 2.15 is a general-purpose product that

The potential of the (-)
terminal attempts to rise.

Ifthe () terminalgoesup, | has two operational amplifier circuits

the output goes down. I .
utputa . built into an 8-pin package.

Figure 2.14 Explanation of virtual grounding +2V
AN o
0— —
GND }—:'
Dj7 +12V
- 1
GND 0.
’—Hj 618
- 7
+12V .
5
0P2
TA75358
51K SR5 ols v
CH1 N 7 10K 20K
S, Jforange |, VA Yy
108 § VR1 . ?:;5353 o 2 o
CH4 2
vellow 10K 1__ZP£"D|E
A% t 4
§ R3 3 0.1
51K SR6 |
2
SN
< + 20K§R4 <
-12v 314 0.1 -12v
+12V
> ! v
-12v +12V
51K SR7 %
+12
CH2 GND PS1 ~ b
orange
10K § orang COM 0JS22WX AC100V
VR2 -U1
GND ~
-12
5.1K§Rs g
-12v
< The parts used in this circuit can be supplied by our company.
-12v

-15-

The circuit configuration is such that the first stage (OP1) converts the outputs of VR1
and VR2 into impedances using a follower, so that the next stage's operational
amplification calculation can be performed without error. The second stage is a
differential amplification with a gain of 2x.

Please follow the steps below to measure.

Measurement Inversion amplification

®Vary the input voltage and measure the change in the output voltage.

Turn VR2 to set check terminal CH2 to 0 [V].

Set SW1 to the lower side and turn VR1 to change CH1 from -6 [V] to +6 [V], measure
the voltage of output CH5 at that time, and plot it on a graph. Since it is an inversion
amplification, the result shown in Figure 2.16 can be obtained.

output
+12

-12 L input
-6 0 +6

Figure 2.16 Inversion amplification characteristics

Measurement Non-inverting amplification
® Vary the input side voltage and measure the change in the output voltage.
Turn VR1 to set check terminal CH1 to O [V].
Turn VR2 to vary CH2 from -6 [V] to 6 [V], measure the voltage of output CH5 at that
time, and plot it on a graph.

Measurement Inversion amplification with offset

®Give an offset of +1 [V] to the input side, @ Vary the input side voltage, and measure
the change in the output voltage.

Turn VR2 to set check terminal CH2 to +1 [V].

With SW1 at the bottom, turn VR1 to change CH1 from -6 [V] to +6 [V], measure the
voltage of output CH5 at that time, and plot it on a graph.

Measurement Non-inverting amplification with offset

o Apply an offset of +1 [V] to the input side, @ Vary the input side voltage, and measure
the change in the output voltage.

Turn VR1 to set check terminal CH1 to +1 [V].

Turn VR2 to vary CH2 from -6 [V] to 6 [V], measure the voltage of output CH5 at that
time, and plot it on a graph.

-16 -

Measurement . Frequency characteristic confirmation
Check the frequency characteristics that can be amplified by the operational amplifier.

The operational amplifier used in this circuit is of a type that cannot amplify very high frequencies.

Turn VR2 to set check terminal CH2 to 0 [V].

Connect a function generator between AIN and GND with SW1 on the top side, and give an AC
signal of about P-P 10 [V].

Connect an oscilloscope to output terminal CH5 and observe the waveform.

Gradually increase the frequency without changing the input AC voltage and observe the change
in the output waveform.

If the operational amplifier you are using is TA75358, waveform distortion will start around 20kHz
and the limits of wide frequency range will become visible.

— Column 2.1 Brushed DC Motor

Brushed DC motors are small, inexpensive, have a large starting torque, and are very
easy to use. Using the schematic diagram of a brushed DC motor shown in Figure 2-A,
we will explain how the motor rotates.

+ How the motor rotates

The coil and commutator wound around the rotor
shown in the figure rotate.
/é\ The permanent magnets on both sides of the
/ stator diagram are fixed to the motor case and are called
. commutator ¢ the stator. The instantaneous positions of the
Coil B / brush and commutator shown in the figure are
\ @ such that current flows through coil A in the
N N direction of the arrow, magnetizes the rotor as
brush shown, and interacts with the stator's permanent
/ magnet to rotate coil A to the right.
rotor When it rotates approximately 90 degrees, the
commutator's position changes, and current flows
through coil B, causing it to rotate to the right in
the same way. The rotor continues to rotate by
Figure 2—-A brushed DC motor repeating this action.

rotate

Coil A —

el

==
<
<}

+ Motor speed and torque

When the rotor rotates, the rotor coil moves in the magnetic field created by the stator's
permanent magnets, creating an electromotive force in the rotor coil.Although it is a
motor, it 1s also a generator, and as the rotation increases, the generated voltage also
increases.

In this case, the generated voltage £,,and motor current / ,,are shown below.

E,~K:R B (V] - Eiquation 1 A voltage é)roportional to the rotation speed
of the rotor is induced.

magnetic flux density

Rotor rotation speed

Other constants

17

battery voltage
r Motor power generation voltage

_ V_EM

Py
L

---formula 2

IM
rotor coil resistance

When the rotation of the motor increases and the voltage
torque generated by the motor becomes equal to the battery
voltage, there is a limit to the increase in rotation speed.
Since the motor torque is proportional to the current,
according to Equation 2 above, the maximum torque is
when the motor rotation is zero, that is, at startup, as
shown in the torque vs. rotation speed characteristic in
Figure 2-B.

rotate

Figure 2-B Torque rotation speed characteristics of brushed DC motor

DC motors have a large starting torque and are inexpensive, so they are
often used in moving parts of home appliances.

In addition, in hand drills and other applications where starting torque is
important, we deliberately rectify alternating current into direct current
and use brushed.

This is because AC induction motors lack starting torque.

Recently, trains have been equipped with inverters, but most trains from a
while ago were powered by DC motors.

Streetcars still use DC motors. The reason is that the starting torque is large.

— Column 2.2 Various motors

Figure 2.C classifies motors by type, rotation principle, and application.
Let's briefly explain the uses and characteristics of each motor.

power motor —T1—— DC motor ——7— brushed dc motor

— brushless dc motor

— stepper motor Stop angle/rotation

L AC motor —— synchronous motor(PM) anglecontrollable

— induction motor(IM)

Angle detection synchro motor
motor

celsyn motor
Resolver

Figure 2. Classification of C motors

18

O Brushless DC Motor/Synchronous Motor (PM)
The brushless DC motor that rotates inside the hard
disk and the synchronous motor that moves hybrid
bicycles and large machinery in factories are actually
motors with the same mechanism.

As shown in Figure 2.D, the surrounding area (stator)
consists of three-phase coils, and the central rotor
consists of a permanent magnet (PM), and the current
position (current angle) of the rotor is detected by a Hall element:

Since you know the position of the surrounding coils and the
rotor position, you can know which coil to excite next and

in which direction it will turn. It is also possible to stop Figure 2.D brushless DC motor
at the target position if necessary. The rotation of the brushless

DC motor/synchronous motor (PM) is completely synchronized with the command.
The motor is driven by a dedicated motor driver or inverter. It will not turn even if
you connect an AC power source or battery directly.

Hall element

@ Stepping motor

Since the rotation speed and rotation angle of a stepping motor can be directly
controlled with a resolution of the number of steps, open-loop rotation control is easy.

However, since the rotation is a step motion, there are some aspects that are difficult
to handle, such as vibration and resonance, and loss of synchronization where
electrical and mechanical motions do not match.

Figure 2.E is a schematic diagram of a two-phase stepper motor.

The rotor is a magnet with fine teeth all around it.

The stator has A-phase and B-phase coils arranged in pairs around the entire
circumference with 1/2 tooth mounting positions shifted.

Figure 2.E shows the state immediately after the B phase is driven to the suction
side. Next, when the A phase is driven to the suction side, the rotor rotates to the
right and advances one step. A special driver is required to rotate the stepping motor.

stator
(=1
N o4

s,

iy y

/\
rotor
/
Figure 2. E-stepping motor explanatory diagram \

19

N4

(®Synchro motor

Rather than a motor that converts electrical energy into mechanical energy, there is
a motor that detects the angle and sends the rotation angle. Many people may not be
familiar with them, but here we will introduce the most commonly used synchro
motors.

Figure 2F shows the structure of the
synchronized motor.

The stator has three sets of coils located at
120 degrees each, which are star-connected
and taken out to the outside. (S,S,9)123 A
set of coils comes out from the rotor via a
slip ring. Usually the rotor

It is used by adding AC power between

R1 and R2.

Figure 2F synchro motor structure

Connect the wires as shown in Figure 2G,
Sa Sa and when you rotate the TX side, the TR
side will also rotate by the same angle.

Si S2 Si S2

Figure 2G torque synchro

2.4 PWM control/H bridge driver

2.4.1 PWM control

The handlebars and pedals of the automatic attitude control
bicycle are powered by a brushed DC motor with a built-in
gearhead. This motor is driven by Toshiba's H-bridge driver
IC (TB6552FNG) and is PWM controlled. The TB6552FNG
contains two sets of circuits, A block and B block, as shown
in the pin arrangement shown in Figure 2.17. Figure 2.18
illustrates the operation of a block on one side of the block
using the block diagram for one circuit in the TB6552FNG
and the terminal descriptions in Table 2.2.

GND
AIN1
AIN2
APW
ASTBY
VM
AO1
AO2

Vce
BIN1
BIN2
BPW

BSTBY
BO1
BO2

PGND

~16 IN1 Function selection of forward rotation, reverse rotation, short
IN2 brake, and high impedance by combining N1 and IN2
-15
STBY Active or standby switching of outputs
14
PWM PWM modulation input terminal, creates a PWM waveform on the CPU side.
-13 [e]] Connect the output terminal motor
12 02 Output is H-bridge operation or high impedance
11 VCC Control power supply 2.7V to 5.5V
GND Control GND
-10
VM motor power
-9 PGND Motor GND

Photo 2.17 TB6552FNG

Table 2.2 Terminal description

terminal arrangement

-5

VM
l
X The TB6552FNG consists of an H-bridge
A - and a control logic that drives the motor,
01,302 as shown in Figure 2.18. The control
M)

=

Vce
1
INT H
IN27 control
sty logic
PWM -
T
GND

duty ratio 25%
duty ratio 50%

duty ratio 75% /

logic includes function switching and
JAN AR PWM modulation input terminals,
which are circuits that can control the

rotation direction and rotation speed of
PGND the motor.

Figure 2. Block diagram
of 18TB6552FNG

PWM (PluseWidthModulation) The
control inputs a pulse with a variable

|

duty cycle to the PWM pin, and controls

the speed of the motor by changing the
average value of the current flowing

through the motor as shown in Figure

LéW N |—>J

_ _ 2.19. In Figure 2.19, the black line

duty ratio 100%

represents the input pulse waveform at
the PWM terminal, and the blue wire

Figure 2.19 PWM represents the motor current.

-21-

2.4.2 H Bridge Operation

The operation of the H-bridge is then described using Table 2.3 and Figure 2.20. The
red FET in Figure 2.20 represents the "ON" state, the red arrow represents the drive
current of the motor, and the blue arrow represents the current due to the back EMF.
When the motor is driven, the H bridge is controlled by PMW and repeats forward
rotation A or reverse B and short brake C. However, if the system is instantly
switched from the forward rotation A or reverse B state to the short brake C, a short
circuit current will flow between the FETs due to the delay in the FET switching speed,
which will cause heat generation in the FET. In order to prevent this instantaneous
short circuit, a D or E state of about 300 ns is inserted during the switch from A or B to
C. When switching from short brake Cto Aor B, the D or E state of about 300 ns is
inserted in the same way as above. At this time, as indicated by the blue arrows of D
and E, the current due to the back electromotive force generated in the coil of the motor
flows to the flywheel diode. Operation diagram F is in a standby state.

control input output

IN1| IN2 |STBY | PWM 01 02 action mode Operation diagram
H

H H H L L L short brake C
H L H Reverse/forward A

L H S I e e B] B
L L L short brake C
H H L Forward/reverse B

H L H [y
L L L short brake C
H OFF

L L H (e Stop DE
L high impedance

H/L | H/L L H L , OFF """" standby F
L high impedance

Table 2.3 Input/output functions

VM VM VM

Flza &2 54 FH B |5 = &4

B e s N e T N N T I AN B

GND

GND GND
® ©

VM VM VM

Q))
aE ZS(AN | VAN ~’ZS -l JCOFFA ZNOFF L

GND GND GND

© ® ®

Figure 2.20 H-bridge operation explanation

22

OLet's try it

2.3 Let's check the PWM control by
observing the applied voltage waveform of
the handle motor. The applied voltage
waveform of the handle motor is the
voltage waveform between O1 and O2 in
Figure 2.18 and between O1 and O2 in
Table 2.3. In the circuit, pins 1 and 6 of
connector CN4 (Photo 2.8) are easy
positions to apply the oscilloscope probe.

Photo 2.8 CN4 and probe

In Photo 2.8, the lead of the lead resistor

Back electromotive is inserted into pin 1 of CN4 and pinched

< force when
switching from A/B with a pin clip, and pin 6 is directly
_ | toC applied by the probe contact. The
oscilloscope settings are vertical axis = 2
V/div, horizontal axis = 200 ps/div, auto
mode. With the remote control and the
bicycle turned on, the remote control is
| — used to operate the steering wheel with
<— duty 50% the remote control, and the remote

control is used to apply a deviation, and
the voltage waveform is observed to
change the duty until the handle follows.
Photos 2.9 and 2.10 show the waveforms as described in Section 2.4.2 above. The
direction of the voltage is reversed on the right and left handles. If the deviation is
large, the duty cycle will also be high, and if the handle follows until the deviation
is zero, the voltage waveform will also disappear.

Figure 2.21 PWM control waveform

2018/06/05 09:06:37 NORMSMS/s 200us/div 2018/06/05 09:08:27 NORM:SMS/s 200us/div
Stoppdd (200us/div) Stoppdd (200us /div)

.....................................

Photo 2.9 Right-hand drive operation Photo 2.10 Left handle operation

23

2.6Remote control light receiving module
2.6.10verview of light receiving module
Automatic attitude control bicycles are controlled remotely using an infrared

remote control.

o QUT
| band pass
| filter o
oGND
i i A=940nm 20kt _Comparator v ‘
I = |
Photo 2.11 Light receiving module Figure2.22 Light receiving module block diagram
Operating voltage 2.7V~3.6V
@ Consumption current 300pA
carrier frequency 37.9kHz
shield — | | e shield signal pulse width 400ps~800us
/ | \ Received light wavelength |940nm
ouT Vee
GND . .
usage environment indoor
directional H=45°V=35°

On the bicycle side is an infrared remote control receiver module from ROHM Co.,
Ltd.RPM7238-H5KType (photo)2.11)using.

This light receiving module is shown in the photo.2.11Shield case as well as
figure2.22As shown in the block diagram of 37.9kHzEquipped with noise
countermeasures such as a bandpass filter. Since the output is an open collector,
multiple modules can be connected in parallel. For example, by attaching light
receiving modules to the front and rear of a bicycle and connecting them in
parallel, you can control the bicycle from all directions without being affected by
the directivity of the remote control.

The signal waveform received by this module is shown in the figure.2.24as shown
in37.9kHza career in 1200bps This is a waveform modulated with a serial signal.
Signal when carrier is present1', if there is no carrier, the signal will be '0'.

37.9kHz carrier 37.9kHz carrier
I Signal '1' | Signal '0' | Signal '1'
[| |
1/1200 second 1/1200 second

[| |
[I I

Figure 2.24 Signal waveform

24

2.6.2.How to use the remote control receiver module

figure2.25shows how to use the remote control receiver module. normal UARTAn
infrared modem is added during communication.

on the sending sideUARTofTXDsignal and carrier37.9kHzofANDIt is modulated by
an element and drives an infrared light emitting diode.

On the receiving side that receives infrared light,37.9kHzAfter removing noise with
a band-pass filter and detecting it, the serial signal isUARTofRXDinput to the

terminal. ‘ ‘ ,
Bicycle side (reception) Remote control side (transmission)

T Serial I/O

Serial I/O Light receiving / TXD UART
UART RXD module infrared

RPM7238-H5R

!

Figure 2.25 How to use the light receiving module

37.9kHz timer output

Optical communication is a communication method that is easily affected by noise,

so please take measures such as adding a checksum to the message and other
measures to prevent malfunctions from receiving noise from inverter-type
fluorescent lamps.

This light-receiving module is of a type that can receive continuous serial signals, but
the lightreceiving module of a general optical remote control is1There are many

methods that can send only word-sized signals, so be careful when selecting a module.

2.6.3remote control transmitter

Diagrams information such as steering wheel angle, accelerator position, push
button information, etc. from the remote control to the bicycle.2.261t is sent in this
format.

% spare
$ 6 A S h |_ UP-PB
terminator |7 DOWN -PB

r START - PB
— Checksum —STOP - PB

6 66 S S S S S

L—accelerator position

— Handle angle LSB

L header

Figure 2.26 Transfer format

Transfer format is from header $ to terminator *6Fixed length in bytes. The
checksum is 0 ‘A ‘SThis is an exclusive or. Serial communication iIsUARTand

the transfer baud rate i1s1200bpsis.

-25-

<O Let's try it2.4

The above diagram2.24Let's observe the
modulation waveform of the remote control
signal explained in . the remote control set
screw6Remove the book, open the lid, and take
a photo.

2.12Take a photo with the oscilloscope probe
as shown.2.130bserve the modulation
waveform. On the remote controlGNDThere is
no check pin. photograph2.12 Like power
pilotLEDPinch the outer lead of the pin clip.

The measurement points are on the circuit
diagram.IC1lorIC2 of1No.

pin=UARTof TXD(waveform photo pink)
and2No. pin =37.9kHzcarrier (waveform photo
green) andFourNo. Pin = Modulation output
(yellow waveform photo).

The vertical axis of the oscilloscope is

2V/div ‘Horizontal axis

500ps/divMeasure with normal single trigger.
photograph2.13 The waveform of the signal
'1' '0' '1' '1' IOI 'O'is'

Photo 2.13 Modulation waveform

<O Let's try 1t2.5

Infrared remote controls are not very resistant to external disturbances.

Loss to outdoor sunlight.

The remote control cannot be used in locations exposed to direct sunlight. ‘Try
using a light or fluorescent light.

What will happen if I use it at the same time as a TV remote control? Infrared
remote control cannot see with the naked eye whether the element is lit or off, but
it can be used with digital cameras and mobile phones.

If you look through the camera on the obi, you can see that the elements are
shining.

<O Let's try it2.6

v I tried connecting the remote control light
receiving modules in parallel.

Lol.

The output of the light receiving module is an
open collector. Because of this, multiple
modules can be connected in parallel (OR),
making it possible to operate from all
directions.

Current automatic posture control bicycles
have a light-receiving monitor pointing
toward the rear.

One joule is installed, so the photo2.14 If you
add a module toward the front like this, you
can maneuver from almost all directions. The
additional module in the photo is attached
Photo 2.14 Addition of light receiving module
to the vehicle body with double-sided tape.

Y b

Photo 2.14 Light receiving
module added

-26-

2.7 three terminal regulator
2.7.1 What is a three-terminal regulator

As shown in Figure 2.28, the three-terminal regulator has
three connection terminals (out, GND, in) as shown in
Photo 2.15 and Figure 2.27, and as shown in Figure 2.28, it
1s a series regulator that inputs an unstable power supply,
compares the reference voltage with the output voltage, and
controls the voltage so that the output voltage is stable at a
‘ "*-i*-m“w - constant voltage.

- +

Photo 2.15 Three-terminal

regulator Output voltages such as 1.8V, 2V, 2.5V, 3V, 18V, and 24 are
available. For this bicycle, we use the three-terminal

b X | regulator TA48L03F shown in Photo 2.15 to create a control
out GIL-ID Uin power supply of 3V from 4 AAA batteries (6V).
Figure 2.27 Dimensions
regulator
Vout Vin
—>0 0<—
stable
power _| unstable
supply — power
ence power supply
O,

GND

19)

2.7.2 How to use a three-terminal regulator

Photo 2.16 shows how to use a DIP-type
three-terminal regulator, and Figure
b @4 2.29 shows how to use a general-purpose
i three-terminal regulator. Since the
' - three-terminal regulator is a series
i | hid regulator, pay attention to the voltage
l ‘ I il difference between the input Vin and the
£/ itk ER output Vout and the heat generated by
: the element.
The minimum input/output voltage
differential, Vin-Vout, must be 1.7V
for general-purpose regulators and 0.5

o

&

Photo 2.16Dip type three terminal regulator

Reverse current protection fast diode V or higher for low-drop regulators.
. Y However, since the calorific value P of
the element is the equation 2.5, which
Vout I o i Vin 1s obtained by multiplying this
48L03F i . -
input/output voltage difference by the
T G = circuit current I, the design should
(/ l take into account the balance between
Necessary to ensure responsivencss \ the voltage difference and the calorific
v Necessary for impedance correction
to load fluctuations of the main power supply value.
Figure 2.29 How to use a three-terminal P=1(Vin—Vout) (W] ---formula 2.5

regulatorregulator

-27-

2.7.3 How to use a three-terminal regulator (advanced version)

Ireg

78XXX 2

I]

v

Figure 2.30 Current boost

In order to increase the current drawn through
the current boost three-terminal regulator, the
external transitor TR and the three-terminal
regulator are circuited like Darlington's
connections, as shown in Figure 2.30.

If the value of IregXR exceeds the VBE of TR,
the output current I flows, so

Iregx R=Vpg + + - formula 2.5
Ireg x hpg>I- + - formula 2.6

%>R « « «formula 2.7
hFE

This current boost output current is said to be limited to about 5 ~ 6 times that of
the three-terminal regulator used, so if the TR is 50 ~60 for hFE, the Ris 5 ~6 Q.

o—0 ;e o
G .
variable variable
output voltage inout voltage
voltage
adjustment

Figure 2.31 Variable output

output

voltage . _| input
e [voltage

v

|

Figure 2.32 Voltage
variable circuit side voltage

A voltage adjustable three-terminal regulator
can easily be used as a power supply with a
variable output voltage by changing the
potential of the G terminal, as shown in Figure
2.31. However, since the voltage difference
between the input and output is the variable
voltage range + the minimum input/output
voltage, the amount of heat generated by the
element indicated by the circuit current X the
input/output voltage difference increases, and
design needs to be required.

Figure 2.32 shows an example of a circuit for an
adjustable output voltage power supply using a
three-terminal regulator. The G terminal of the
three-terminal regulator uses an operational
amplifier to set the potential at low impedance.
By supplying the op amp power supply from the
input side, the range of adjustment of the output
voltage setting is extended.

28

2.8 About A/D/D/A conversion
The bike uses a resistive string digital-to-analog conversion (AD5611) and a successive

approximation analog-to-digital conversion (with built-in CPU) for the angular rate
sensor input in the drift correction circuitry. Because analog-to-digital and digital-to-
analog conversions are inverted and circuitically similar, the related A/D and D/A
conversions are described in pairs here.

2.8.1 What is A/D/D/A conversion

(1) A/D conversion: Converts analog values such as voltage into digital values (bit
weights). (2) D/A conversion: Converts digital values (bit weights) into analog values
such as voltages. For example, if you convert an analog value of 6.5 [V] with an
analog input range of 0 [V] ~ 10 [V] to a digital value with an A/D converter with 8-

bit resolution = 256 (0 ~255), the digital value x is

If this is expressed by the weight of 8 bits, it is 128 + 32 + 4 + 1 = 165.

128641321618 [4|2 |1
Oxoxxoxocanbeg’o

none — X

The binary representation is 10100101b and the hexa representation is A5h.

Figure 2.33 Balance scale

The analog-to-digital transformation of the sequential conversion method is like a
balance in Figure 2.33. Find a combination of weights that balance by switching
weights in order: 1/2 weight, 1/4 weight, and so on. The 8-bit digital value A5h
described above is converted to digital to analog at 10 (V) full scale.

The D/A conversion is the sum of the weights of the bit weights shown in Figure
2.34.

29

%
L T : -
2 + . - + . -+ . e =165/255x10 (V)

bit weight (

11,1, 1

2 8 64 256

=6.445 (V]

Figure 2.34 Bit weight weight

jXIO (V) =6.445 (V)

In this way, the action of searching for the weighted combinations (bit weights) that
are all balances is called A/D conversion, and conversely, the action of outputting an
analog quantity that matches the weights combination (bit weights) is called D/A
conversion. Note: The reason why the answer is not 6.5V is the full-scale error
described below.

2.8.2 Specific example of A/D/D/A conversion part 1

decoder

bn o——

2n-2
Dn-1 2n-3
Dn-2
Ds 2
D2
D

' 1

Do

Vref
e
L swar-1(A) -

Figure 2.35 Resistor string method

SR
L SW-2n-2
g R
L Sw-2n-3
< resolution 2n
Resistance R and SR
) SW-2
R
L Swi
2R
) SW-0

¥ GND

D/A conversion

Figure 2.36 Potentiometer

Vref

<—®

GND

Vout

—o

Figure 2.35 shows a D/A conversion diagram

using the resistor string method.

For this D/A conversion, as many resistors R

of the same value as the resolution are

connected in series, and as many output

switches SW as the resolution are prepared

at the connection points.

Only one output switch specified by the
binary/decimal decoder is turned on, and the voltage
divided by the series resistor is output.

The resistor string method has a simple
configuration and is advantageous in linearity and
conversion speed.

Also, by using the Vref, GND, and A connections in
Figure 2.35, it can be used as a potentiometer or
electronic volume as shown in Figure 2.36.
However, because the number of resistors and
switches required is equal to the number of
resolutions, the higher the resolution, the larger the
circuit becomes and the more difficult it becomes to
manufacture. (The normal resolution is 8~10 bits)
The maximum number of bits in the resistor string
1s 21-1, so a full-scale error of Vref-1LSB will occur,
but it can be rounded off by adjusting the span.

-30-

Vref+

R/Z% —>
é Encoder
R v—>
z Digital
R ,_> D7_<°>utput
I De—o
D5—o
i D4—
Ré 5 o .
_ DZ_ .
é D1
DQ
o + o
analog >
input

R/25 comparator

GND

Figure 2.37 Flash type
A/D conversion

(2) Flash-type A/D conversion The flash-type A/D
conversion shown in Figure 2.37 is similar to the
resistor-string digital-to-analog conversion, with
the same number of series resistors and
comparators as the resolution, and the voltage
level of the analog input value and the string
resistor are compared. Since the comparator up
to the same voltage level as the analog input
value is set to 'ON', high-speed analog-to-digital
conversion is performed by encoding (encoding)
the number of comparators in the 'ON' state and
outputting it digitally. However, higher
resolutions increase circuit size and power
consumption, which is not very realistic.
Normally, the resolution is up to about 10 bits,
and it is used for image processing and other
purposes by utilizing high-speed conversion
capabilities.

2.8.3 Specific example of A/D/D/A conversion part 2

(1) R-2R Ladder D/A Conversion The resistor-string D/A conversion described in Section
(1) above requires a power of 2 (e.g., 65536 sets of resistors and switches in the case of
16 bits) that is equal to the number of resolution bits, and is difficult to fabricate at
high resolution. Therefore, the shape of the rudder resistor is devised to reduce the
number of resistors and switches, resulting in the D/A conversion of the R-2R ladder

method.

____ Vref

GND

Figure 2.38 Voltage addition type R-2R
ladder method D/A conversion

We will use the R-2R ladder method D/A

>——o conversion to explain how D/A conversion

works. In the R-2R ladder method of

When all bits are ON VOltage summing type D/A variant +
Vout=Vref-1LSB conversion, when switch 8 on the top side

is connected to the Vref side, half of the
voltage of Vref is added to the output, and
at the next switch 4, half of the Vref half
(1/4) is added, and half of the voltage is
added each time the bit goes down.

If the number of bits is infinite, Vout=Vref, but in reality, a full-scale error occurs, and
Vout = Vref-1LSB, which is spanned by the output amplifier. The R-2R ladder can be
easily analyzed using the superposition theorem or the Feng-Thevenin theorem.
Compared to the string method, the R-2R ladder method D/A conversion simplifies the
circuit but reduces linearity due to resistance errors. In particular, the resistance error
1s an important factor when the number of conversion bits increases.

-31-

(2) Successive approximation method A/D conversion

Vin sample- Successive
hold lapproximation| N digital output
type register
comparator .
N bit
R-2R data path

ladder type
ID/A conversion|

Figure 2.39 Successive approximation method A/D conversion

Successive approximation analog-to-digital conversion works in the same way as
weighing weighing. Using the balance in Section 2.8.1 above as an example, the order
in which the A/D transformation is performed is explained. (1) Since successive
approximation A/D conversion cannot be A/D conversion in an instant like the flash
type, the analog input value at the start of conversion is maintained by a Mr./Ms. pull
hold circuit so that the analog input value does not change during A/D conversion.
This is the state in which the amount of electricity to be measured is placed on the
balance plate. (2) Place 1/2 full-scale weight on a weight dish. If the weight side is
light— now with the weight on it, and the weight side going to (3) is heavy, — put the
weight on it now, put it down and go to (3) and put the 1/4 weight of the full scale on
the weight plate. — the weight side is light, — the weight side going to (4) is heavy
with the weight on it now, put the weight on it now, and go to (4) and do the same
work sequentially with the weight going to (4) 1/8, 1/16, 1/32 + =« + - - and so on. (5)
Repeat the same process until the smallest weight, and finally the weight on the
weight dish becomes the weight of the digitally converted bit. Return the Mr./Ms. pull
hold to the Mr./Ms. state. In Fig. 2.39, the R-2R ladder type D/A conversion is a
weight, the comparator 1s a balance, and the successive approximation register is a
weight plate, and the above (1)~(5) is automatically executed.

In voltage-comparison analog-to-digital conversions, analog-to-digital
conversions that require conversion time, such as successive approximation
conversions, use a Mr./Ms. pull-and-hold circuit to prevent the analog value
from changing during conversion.

Figure 2-C shows the basic shape of the
Mr./Ms. pull and hold circuit.

Op amp OP1 in Figure 2-C selects the

Vin SWlo . , — lowest input offset current. The capacitor
analog input l b Holdoutput C1 for the Mr./Ms. pull hold is a
c1 capacitance on the order of pF. After SW1
] I is turned off, the analog value of Vin
stored in C1 is retained, resulting in a

Mr./Ms. hold. In a real circuit, the
leakage current of SW1, the natural
discharge of C1, and the offset current of

OP1 determine the performance of
Mr./Ms. pull hold.

Figure 2-C Sample hold

-32-

— Column 2.4 Multiplexer

analog multiplexer

Ain7 o—1—o

Ain6 o—1—o

Ainb o—1—o

. . Dn
H sample Successive
Ain4 o 0<—0 ccessiv -
hold approximation type | N bit bus S
Ain3 o——o register Do
Ain2 o——o
Ainl © o R-2R ladder type
D/A conversion

Ain0 o——o

I

address latch
decoder

[T
Ao A1 A Figure 2 - A/D conversion with D multiplexer

Figure 2-D is an A/D converter with an analog multiplexer (analog signal switch).
Switch multiple analog inputs and perform analog-to-digital conversion in sequence.
Modern CPUs have built-in A/D conversion and D/A conversion, so there is no need
to be aware of the hardware, but a circuit like the one shown in Figure 2-D is built
into the CPU.

The multiplexer can specify individual channels or scan specifications, but it is
inevitably affected by the previous conversion channel.

If the converted value of the previous channel is large, an error will appear in the
larger converted value of the next channel. This is likely due to the charge
accumulated between the multiplexer and the sample and hold. Countermeasures
against this inter-channel interference include: (1) channel placement taking into
account signal priority; and (2) connecting to GND without using the channel
immediately before the important channel.

OTry it out

2.7 Figure 2.40 shows a test circuit for a simplified successive approximation analog-
to-digital conversion that combines a 4-bit R-2R ladder digital-to-analog conversion
with a comparator. Build it on a breadboard or a universal board. The circuit
configuration is explained. 1/2 of OP1 and OP2 convert a resistor-divider circuit
(high impedance) to low impedance using followers. 2/2 of OP2 is a comparator that
compares the analog input voltage to the D/A output of R-2R. When the analog input
voltage < D/A output voltage, LED1 lights up. R5 is a positive feedback resistor that
provides a 10 kQ/1 M hysteresis range for the comparator. The op amp TB75358
used can operate from a single supply, but the + 12V power supply is available.
R10~R17 and SW1~SWS8 constitute a 4-bit R-2R ladder D/A conversion.

-33.

How to use:

Set the Vref. Fig. 2.40 Turn VR2 in the A/D conversion and D/A conversion test circuit
and adjust the voltage between CH2 and GND so that it is 10 [V]. This voltage is the
full-scale value for the analog-to-digital and digital-to-analog conversions. SW8 ~ SW1
to the |'0' side.

[4-bit D/A conversion]

(1) Measure the voltage between CH4 and GND when SW8 ~ SW1 are all downward.
(SW-0]

(2)Measure the voltage between CH4 and GND when SW8 ~ SW1 is down, down, down,

and up. [(SW-1]

(3)Measure the voltage between CH4 and GND when SW8 ~ SW1 is down, down, down,

down, and down. [SW-2] (

4)Repeat in this order until [SW-15]. (5) Record in the table below and plot on the
graph.

SW CH4[V) .
s
14
13 I
"
11
o RN
:
: R
:
5 T A A R
3
2 T A A R
0 ST N N T N N N N O O S
01 2 34 56 7 89 10111213 1415

Have you confirmed that the analog output value changes by 1 LSB due to the
combination of SW8 ~ SW1

SW8 ~ SW1 is a 4-bit D/A converter when operated by a computer. Next, let's use the 4-bit
R-2R ladder digital-to-analog transform to try out the successive approximation analog-
to-digital transformation shown in Figure 2.39.

-34-

[4-bit A/D conversion]

(D Set the analog input voltage Vin. Rotate VR1 to set the analog input voltage to any
value. (About 7V is easy to understand)

@"Turn SW8 'ON"." This is the same as @ "Place 1/2 full scale weight" in item (2) of
2.8.3 above.

If LED1 does not light up, the weight side is in the same state as light, so go to (3) with
SWS8 ON (as it is with the weight you just put on it). When LED1 lights up, the weight
side is in the same state as heavy, so SW8 is 'OFF' (lower the weight you just put on it)
and go to (3).10x

+12V
+12V e 0.1
| 37 +12V
1 e 0.1
18k2R1 Analog input _
voltage setting 8 s R3 !
CH1 6 - yellow 10K
7 68
/ orange . AA N 7_
VR1 5 P Wy 4 P
TA75358 R4 oP2
TA75358
CH4 Ay
2 yellow 1M N LED]
N R5
+
¥} o1
+12V -12V
R2 VrefE%TE v
CH2
orange T ,1 Y{EII R'IO t+12
———— 20K GND PSSt ~ >
OP2 Sws é R14 CoM OJSZ’Z_VJT AC100V
TATO3%8 Ri1 5K GND_ |, ~ =
-12V © 20K ;
._(O_W\I_‘ 13V
Sw4 R15
§ 10K
R12
o 20K
Sw2 2 R16
R13 3 10K
o 20K
SWi1

©

@ "Turn SW4 'ON"." This is the same as "Place a weight of 1/4 of the full scale."
LED1 does not light up = the weight is light — SW4 goes directly to @
LED1 lights up = weight is heavy — SW4 is 'OFF' and goes to @

-35-

@ Execute "Perform the same work sequentially with weights 1/8, 1/16, etc."
Perform the same work as 3 above in the order of SW2:SW1.

(®The output value of analog/digital conversion is

The sum of the weights of the switches SW that are 'ON' x Vref.

For example, when SW8 and SW1 are 'ON' and Vref is set to 10 [V],

Digital conversion value = (1/2 + 1/16) x 10 [V] = 9/16 x 10 [V] = 5.625 [V] Compare with
the voltage between analog input voltage CH1 and GND.

The converted digital value is about 1 LLSB smaller at most. This is the full-scale error.
Turn VR1 a little to change the analog input value a little, and repeat steps 1 to 5 to check
the A/D conversion operation.

-36-

Chapter 3 Core CPU for Embedded Automatic Attitude Control

The CPU of the bicycle can be selected from Toshiba Corporation's TLCS-900 type or
ARM type. The optical remote control is only TLCS-900 type. Table 3.1 summarizes
both CPUs. Both CPUs are designed for small-scale embedded applications and
have the same package, operating voltage, and integrated I/O and processing power.
TLCS-900 is a CPU classified as CISC type and ARM is classified as RISC type.

Core CPU Model name |specification package

TLCS—900/L1 |TMP91FW27UG |ROM=128kbyte |LQFP64—P—1010—0.50D

Toshiba RAM=12kbyte
clock=27TMHz
ARM TMPM332FWUG |ROM=128kbyte |LQFP64—P—1010—0.50E
Cortex—M3 Toshiba RAM=8kbyte

clock=40MHz
Table 3.1 CPU overview

3.1 TLCS-900 Architecture
TLCS-900 is a generic name for Toshiba's original 16/32-bit CISC core CPUs.

Although there are multiple CPU cores, all types have the same set of registers,
which are fully 32-bit, and can use the same compiler assembler, as well as the
ability to repurpose source programs from assembly language descriptions. In
addition, the TLCS-900 distinguishes between 16 bits and 32 bits at the end of i1
and H1, and although there are differences in the ALU, internal bus width, and the
number of stages of the pipeline, the usage including I/0 is the same, so from the
user's point of view, the TLCS-900 is a type of core. Processing power is available up
to 80 MIPS with 32-bit CISC instructions. The TLCS-900, the predecessor of the
TLCS-900, was designed to be Z80 upcompatible, and the TLCS-900 is an extended
version of the Z80 in register names, etc., so the Z80 program in the assembly
language description can be used with some modifications.

3.1.1 Features of the TLCS-900

The TLCS-900 is designed with a thorough CISC philosophy to improve
performance, as shown below.

(DGenerated code is short

A computer is a machine that reads (fetches) and executes instructions (codes) in
memory. Instructions captured in a computer execute pipeline processing, and
generally one instruction is processed at one clock, but since fetching involves
instructions and operands, some things are not completed in one clock, and the
processing power of the computer = fetch speed. In other words, the shorter the fetch
time, the faster the computer processing speed will be, so the TLCS-900 uses variable-

-37-

length instructions and mixes operands in the instruction word to reduce the code so
thoroughly that it becomes difficult to disassemble it, thereby improving performance.

@ Good addressing orthogonality

Addressing is a method of indicating the data specified by an operand or the storage
location of the data. A computer executes a program written using a combination of
instructions and addressing as shown in the following format.

unsignedintMEM, a; C language description:
a += MEM; Addition of MEM and a
|_ L— operand
order
operand
ADD XBC,(MEM) ; Assembly description:

2nd
L L - oﬁerand ; Add 4 bytes from the memory address specified

1st operand ; by (MEM) to the XBC register.
add order

CPUs that are less limited in this combination of instruction and addressing are said to
have good addressing orthogonality. All registers, memory, and stacks can be specified
for addressing. Even if the processing speed expressed in MIPS is the same between
CPUs and CPUs that are limited to only registers, such as RISC type, the actual
execution speed of the program will be several times different.

The TLCS-900 i1s a CPU with excellent orthogonality of addressing.

(@Function to automatically generate an appropriate operand size

TLCS-900 has no jump width restrictions such as segmentation for branch instructions
such as jump instructions and call instructions, and there is no overhead such as
always using operands with the maximum address width.

The compiler, assembler, and linker, which are language tools, can determine the jump
width when reading the source program, so the TLCS-900 language tool automatically
calculates the branch width and selects the appropriate 8-bit, 16-bit, or 24-bit branch
width. It uses an innovative technique to generate width operands.

@®Conditional CALL command/Conditional RET command

There are conditional instructions for subroutine calls and returns from subroutines.
On CPUs where conditional CALL cc and RET cc cannot be used, CALL cc is a
combination of Bee + JSR, and RET cc 1s a combination of Bee + RTS, which will
definitely slow down processing by increasing the number of instructions by one.

-38-

(® Rich in CISC instructions

There are a variety of instructions unique to CISC, such as MIRR (mirror)
instructions, DAA (decimal correction) instructions, and powerful bit instructions,
and there are no restrictions on operand size, and 8-bit, 16-bit, and 32-bit widths
can be combined, so the result The program code is shortened and can be executed
at high speed.

_ As a slight aside
low-priced, high-pertormance CPUs like the Raspberry Pi (a bit different from
embedded CPUs) are now easily available, so there is no need to be aware of the
CPU architecture, but embedded CPUs Back when CISC was at its peak, the
architectures of the TLCS-900 and M16/32 (Renesas/Mitsubishi) were two of the
best.

As microcomputer engineers, we poured our energy into understanding his CPU
architecture, and we were very impressed.

3.1.2 Register configuration of TLCS-900

As shown in Figure 3.1, the register configuration of the TLCS-900 is fully 32 bits,
while the register name is upward compatible with the Z80, making it very easy to
use because all registers can be used as an accurator. The register configuration is
unified for all types of CPU cores of the TLCS-900, and programs can be used. The
following is a brief description of the registers.

| 32 bit
i 16 bit
| 8 bit i 8 bit —»
4 bankf [I T ! I !
— [I I
XWA w A
XBC B C
XDE D E
general XHL H L
purpose
register
XIX IX
X1y IY
Xz 1z
L xsp Sp
B sr 1 ¢ H'
Dedicated
register | PC |
B | control register |
control -
register | INTNEST |

Figure 3.1 TLCS-900 register configuration
(1)General-purpose register

There are seven 32-bit general-purpose registers, XWA to XIZ, shown in Figure 3.1,
which can be used as accumulators or index registers.

-39-

There are four banks of the four XWA to XHL with the same configuration, and bank
switching can be executed with one instruction, so registers can be saved at high
speed during interrupts.The number of general-purpose registers may seem small
compared to RISC-type CPUs of the same class, but this is because compared to
RISC-type CPUs, where all calcula- tions can only be performed in registers, CISC
type CPUs, especially the TLCS-900, use the first operand as the first operand. This
is because addressing is powerful, such as being able to specify a memory area on the
(destination) side, so there is no need for many general-purpose registers.
General-purpose registers can be specified as 8-bit, 16-bit, or 32-bit wide.Figure 3.2
shows a specific example of width specification using the BC register as an example.8
-bit specification: B register, C register, QB register, QC register 16-bit specification :
BC register/QBC register 32-bit specification: XBC register

Note: QB, QC, and QBC are extended instructions and are 1 byte longer.

XBC QB QC B C

QBC BC
Figure 3.2 Register width specification

(2) Stack pointer (XSP)

A 32-bit wide register that points to the stack location when operating memory as a
stack. The stack is used to store the return address of subroutine calls, and is used as
a stack frame as a method for passing arguments in the C language.

(3) Status register/flag register (SR/F)

The upper byte of the 16-bit wide register is the status register SR, and the lower
byte is the flag register F.

Figure 3.3 shows the bit arrangement of status register SR. IFF2 to IFFO are
interrupt mask registers that indicate the interrupt levels that the CPU can
currently accept.

15 14 13 12 11 10 9 8 7 s 1.0
LT ! IFF2 | IFF1 [IFFO ! T [0 ! RFP1 | RFPO ! flag register
Interrupt permission Register bank No.0~3
Level 0-7

Figure 3.3 Status register(SR)

When the value of IFF2 to IFFO is 1 or less, all interrupts are enabled, and when the
value of IFF2 to IFFO is 7, interrupts are disabled. After the CPU is reset, IF F2 to
IFFO are initialized to 7, and when the interrupt enable instruction EI n is executed,
this value becomes n, allowing interrupts up to interrupt request level = n.

-40-

Register file pointers RFP1 and RFPO specify No. 0 to 3 of the four register banks.
The default value of register bank No. is 0 bank.

For interrupts that require speed to save registers, use an instruction such as LDF
n in the first line of the interrupt service routine to specify the register bank
number to be used during the interrupt. To return from an interrupt, use the RETI
instruction to return to the state before the interrupt.

In the flag register F shown in Figure 3.4, the corresponding flag changes and is
stored according to the CPU's calculation results, and the flag is automatically
referenced by the judgment instruction in the program, rather than being directly
checked by the programmer.

0
|

2 1
| VI N c |
L I— carry flag
negative flag

Parity/overflow flag

7 6 4 3
[statusregister [s | z [0 [H [0

half carry flag

zero flag

— sign flag

Figure 3.4 Flag register (F)

(4) Program counter (PC)

The TLCS-900 uses the lower 24 bits of the 32-bit wide program counter PC to
specify a 16 MB memory area. The program counter contains the “address of the
drawer" that will be opened next after the "“memory drawer containing the
program". Normally, the program counter value is incremented sequentially, but if
there is a jump or call instruction in the program, the jump address value specified
there is copied to the program counter.

(5) Control register (CR)

The control register includes a configuration register for DMA transfers and a
nesting counter for interrupts, and is treated like an intermediate between a
register and an I/O and accessed with an LDC instruction.

The TLCS-900 has 4 or 8 DMA transfer channels as shown in Figure 3.5, consisting
of the following 4 setting registers.

DMA transfer is an automatic transfer function in which the CPU does not issue
transfer addresses, but the DMA controller manages transfer addresses and
transfer counters, and combines this with software interrupts.

DMASN : 32-bit DMA source address register
DMADn : 32-bit DMA destination address register
DMACn : 16-bit DMA transfer counter

DMAMn : 8-bit DMA transfer mode register
(The n at the end indicates the channel number)

.41-

channel 0

DMASO Transfer source address register 0
DMADO Transfer destination address register 0
| DMACO Transfer number counter register 0

DMAMO | Transfer mode register 0

channel 7(3)

DMAS7(3) Transfer source address register 7(3)
DMAD7(3) Transfer destination address register 7(3)
[DMAC7(3) Transfer number counter register 7(3)

DMAM7(3)| Transfer mode register 7(3)

Figure 3.5 DMA Control Register

(6) Bank register

The general-purpose registers XWA to XHL shown in Figure 3.1 are provided in four
banks using a bank switching system. Bank switching can be performed by using the
LFD n instruction to rewrite the status registers RFP1 and RFPO in one clock, so
registers can be saved faster than using the PUSH and POP instructions when an
Interrupt occurs.

3.1.3 TLCS-900 interrupt

Interrupt control of the TLCS-900 shown in Figure 3.6 is divided into interrupt
acceptance processing performed by the interrupt controller and interrupt service
routine processing performed by the CPU.

The interrupt controller and CPU are connected by an interrupt request signal INTRQ
and an interrupt vector representing the interrupt factor.

Interrupt processing is performed in the following order.
(1 When an interrupt occurs, set the interrupt request F/F for each cause.

(2The interrupt controller sends the interrupt request level and interrupt vector to the
CPU according to the preset interrupt request level order for each interrupt source.

(3 The CPU side receives the interrupt request level, compares it with the current value
of the interrupt mask register IFF, and accepts the interrupt if the interrupt request
level is greater than or equal to the value of IFF.

@ The CPU reads the interrupt vector and at the same time returns a vector read ACK
to the interrupt controller.

(5®When the interrupt controller receives the vector read ACK from the CPU, it resets
the corresponding interrupt request F/F.

42

NMI S
Q Interrupt)
l__ R controller side CPU side
-—
ACK
Interrupt
request F/F
INTO S priority | , INTRQ Imerrupt
Q H—> F——] level judgment
encoder / |
R comparator
[|
ACK T |
Interrupt |
request F/F
| l«—reset
INTXX S Pr|or.|ty I IFF 2~0 |(«<——EI 7~
Q Sett.lng | DI
L__ R register |
|
ACK T |
Interrupt |
request F/F |
interrupt vector
INTh S Interrupt , Ivector
Q vector

l/ R generation /8 loading]
ACK T oK

Interrupt

Interrupt
request F/F p

request F/F
Figure 3.6 Interrupt control schematic diagram reset

©The CPU PUSHes the program counter PC and status register SR. Writes the
value of the accepted interrupt level +1 to the interrupt mask register IFF.
Increments the value of the interrupt nesting counter INTNEST by 1.

(DThe CPU jumps to the address indicated by the value (OFFFFOOH + interrupt
vector) address data in the vector table, executes the interrupt service routine,
and with the RETI instruction after the interrupt ends, pops the status register

SR and pr fgmm counter PC, and loads the interrupt nesting counter. Decrease
the value of INTNEST by -1.

— Column 3.1 Interrupts

Interrupts are also subroutine calls in a broad sense. The difference between
an interrupt and a subroutine call is in the method of specifying the jump
destination. In the case of a subroutine call, the jump destination address is
specified in the program like CALL label, but since an interrupt is an event
that starts from a sudden interrupt request event from I/0, there is no place
to write the jump destination. Therefore, a number (interrupt vector) is
assigned in advance to the I/0 that requests an interrupt, and a memory area
(interrupt vector table) is prepared in which the jump destination address
corresponding to that number is written. When an interrupt occurs, the CPU
executes the jump destination interrupt service routine written in the vector

table corresponding to the vector number sent from the interrupt controller.

43

[Column 3.2 20MIPS wall

As shown in Figure 3-A, a microcomputer consists of a core CPU and memory
(ROM/RAM)/I, each of which is connected by a bus (address bus, data bus,

control bus, etc.). As core CPU speeds increase, if the speed difference between

I/0 and CPU increases, it will no longer be possible to connect with a direct bus.
When MIPS (the number of instructions that can be executed per

second), which is one of the computer performance indicators, is

20 MIPS or more, the I/O/memory access time is about 50 ns, which 1is the
limit of direct bus/direct fetch. If the speed is higher

than this, cache memory is used to run only the core CPU

peripherals at high speed, and a ““bridge" is used to access the low- speed
bus.

core cache
CPU memory
wore Express bus
CPU bridge .
The ARM architecture
Bus lowspeedbus also uses this bridge
to connect the AHB
(high speed) bus and
/0 ROM RAM /0 ROM RAM the APB (low speed)
bus.
Direct bus

bridge connection bus Bus configuration is

also a deciding factor
when selecting an
embedded CPU.

Figure 3-A Microcomputer bus configuration

3.2 ARM Architecture 3.2.1 History of ARM Company Before explaining the
ARM processor and ARM architecture, I will explain the history of ARM
Company. ARM was established in 1990 as Advanced RISC

Machines Ltd., a joint venture between Apple Computer, Acorn

Computer Group, and VLSI Technology. In 1998, the company changed its
name to ArmHoldings when it went public. In 2016, the company was
acquired by SoftBank and continues to operate to this day.

3.2.2 ARM's sales strategy ARM does not manufacture CPU processors,

but rather sells the right to use the ARM architecture intellectual

property (IP) license, and receives royalty income from manufacturers who
receive a portion of the CPUs they sell. It is established as a

company. Currently, there are over 1,550 companies using IP licenses, including
IBM, Motorola, Nintendo, Sharp, and Samsung Electronics.

3.2.3 Sales methods of semiconductor manufacturers

Each semiconductor manufacturer receives the ARM architecture blueprint from
ARM and incorporates it into their own CPUs.

44

Then, each company creates and sells its own CPU processor by adding the
necessary memory, peripherals, input/output, etc., and other functions. This
reduces development time and costs for the architecture within the CPU, while
also making it possible to quickly sell new processors.

3.2.4 ARM architecture details

Figure 3.7 shows the ARM architecture details. I will explain in the
order of the numbers in the diagram.

Semiconductor development manufacturer
ARM architecture
processor core system
‘6 —
EEES . (4) register
o> 3 €
N -z2 || 25| & 258 g
interrupt oLy SR o ges 2 |\
® 8= ~ = (5) ALU 3))
geeg = =z L trace
= o
- :::: = 4
= O (7) memory interface o)
°
d b @
instruction bus (11) memo ata bus
(PHB LITE bus) protectionunt | (PHB LITE bus)
I
Cortex-M3 (10) AHB/APB Bridge ~ f—f (8 debuginterface k::dem'\
A =
APB bus [T 1 1 option
Y Y \ v
code in-system and dedicated input/output
memory Peripheral circuit s“g’ﬁgﬂi‘?'”gs circuit

Figure 3.7 ARM architecture details

(1) Nested Vectored Interrupt Controller (NVIC) The nested vectored interrupt
controller (NVIC) can be more clearly understood by dividing it into nested and
vectored interrupts. The nested type is a function that appropriately manages the
order of interrupts based on the priority of the interrupt when it occurs. When a
vectored interrupt occurs, it refers to a place called a vector (interrupt vector
table) where the names of interrupt sources are written, and sends the interrupt
name to the CPU. External interrupts can be set between 1 and 240. Interrupt
priority is set using an 8-bit register divided into two groups. In most actual
products, priority can be set using 3 to 8 bits. When saving and restoring registers
during tail chaining, preemption, late arrival, and three interrupts, continuous
interrupt processing is possible without unnecessary processing. When an
interrupt occurs, the NVIC handles the interrupt according to the priority of the
interrupt, and at the same time performs a process called stacking to save the
currently used registers.

The stacked registers are determined by the "ARM Architecture C/C++ Language
Standard Procedure Call Conventions (AA PCS)" and include registers RO to R3,
R12, LR (link register), PC (program counter), and PSR. (Program status
registers) are saved to the stack. In addition, the stack to be saved starts from the
highest address of the static memory, and in the case of Cortex-M3, register
values are saved sequentially from Ox3FFFFFFF to lower addresses.

45

Figure 3.8 shows the memory map of Cortex-MS3.

o OxFFFFFFFF

vendor specific
0xE0100000
Dedicated peripheral bus OxEOOFFFFF

(debug/external)
0xE0040000
Dedicated peripheral bus OxE003FFFF
(internal) 0xE0000000
OxDFFFFFFF

external device

In't'al value of stack
pointer Tﬁe stack pointer 0xA0000000
is a fully descending type 0x9FFFFFFF
located in static memory external RAM
(SRAM) . 0x60000000
) Ox5FFFFFFF
peripheral
0x40000000
stack = Ox3FFFFFFF
data SRAM
{ 0x20000000
Ox1FFFFFFF
code

0x00000000

Figure 3.8 Cortex-M3 memory map example

(2) Instruction fetch unit The instruction fetch unit is a unit that reads the
instruction program to be executed from memory. The read instruction program is
passed to the decoder.

(3) Decoder
What is a decoder? It converts the instructions passed from the

instruction fetch unit into machine language.

(4) Registers

Registers are storage devices within the CPU that temporarily store calculation
results, etc. In the case of Cortex-M3, there are 13 32-bit general-purpose registers.
Table 3.2 shows a list of registers.

46

register name Functions (bank register, etc.)
RO general purpose register
R1 general purpose register
R2 general purpose register
R3 general purpose register lower register
R4 general purpose register
R5 general purpose register
R6 general purpose register
R7 general purpose register
R8 general purpose register
R9 general purpose register
R10 general purpose register upper register
R11 general purpose register
R12 general purpose register

R13(MSP) | R13(PSP) Main stack pointgr (MSP)
Process stack pointer (PSP)

R14 Link register (LR)
R15 Program counter (PC)

table3.2General-purpose register list

lower registerROfromR7is for all instructions that specify general-purpose
registers (Cortex-M3With instructions available in16bit instructions and 32bit
instructions). upper registerR8fromR12specifies a general-purpose register32Can
be accessed with bit instructions, but unlike lower registers16It cannot be accessed
with bit instructions.R13(MSP,PSP)is called the main and process stack pointer,
and stores the current stack pointer position.OSBasically, if you do not
useR13teethMSP(main stack pointer). In addition to general-purpose registers,
table3.3status registers likexPSR - There are interrupt mask registers, control
registers, etc., which can be accessed by special instructions.CPUThis is a special
register for control.

register name function
XPSR ALU flag (zero flag, carry flag)
(Program status register) Contains the execution status and the number of the currently executing interrupt

PRIMASK Disable all interrupts except non-maskable
(interrupt mask register) interrupts (NMI) and HardFault
_ FAULTMASK Disable all non-NIM interrupts
(interrupt mask register)

BASEPRI Specified priority or low priority interrupts
(interrupt mask register) all prohibited

CONTROL - . .

. Sets privilege state and stack pointer selection
(control register)

table3.3 Special register list

(5)ALU
ALUteethArithmetic Logic Unitlt is an abbreviation for “arithmetic logic device"

in Japanese, and performs theoretical operations and four arithmetic operations.
Cortex-M3teeth32bitCPUThereforeALUtoo32Processes bit by bit.

- 47 -

(6)trace interface

(7)Ymemory interface

(8)debug interface

(9)debug system

aboveFourThe items are interfaces and systems related to debugging, which will be
described later.Cortex- M3The debug system isCoreSightThe debug architecture
covers a wide range of debug systems, including debug interface protocols, debug
bus protocols, debug component control, security functions, and trace data
interfaces. These components are typically used only by debugger software and not
by your application.

(10) AHB/APBbridge

coreCPU Surrounding high-speed system busesAHBandI/OLow-speed veriferal
buses such asAPBIt is a bridge that serves as a bridge. thisAHB/APBThe
bridgeARMbus management architecture,Cortex-M0The same bridge is used in .

— column3.3 About low power consumption
ARMThe instruction language architecture of RISCarchitectureCISCarchitecture
CPU(Intelof Corelt can be said that the hardware size is smaller and power
consumption tends to be lower than that of other models (e.g. series). Also, the
instruction architecture isRISC However, we focused on code density. CICSWe
are designing instructions close to . Therefore, by making full use of coding
technology, he is able to extract performance that exceeds the operating clock of
the processor. Specifically, when we compared the power consumption of Toshiba
Corporation's equivalent class embedded CPUs, TLCS900H1, 900L1, and
Cortex-M3, there was no big difference between them, and they consumed
power in the order shown below, which work well.

performance high TLCS900H1 > Cortex-M3>TLCS900L1 performance low

power consumption high Power consumption low

—column3.4 CMSISabout
In the development and maintenance of systems using microcomputers, it is very|
advantageous to utilize technological assets accumulated in the past. ARMThe

company is trying to improve the portability of its software.Cortex- MSoftware
interface standard for series CMSIS(Cortex Microcontroller Software Interface
Standard)announced. This allows peripheral settings andDSPLibrary - ROTThis
improves the reusability of interfaces, debugger interfaces, etc., making
development more efficient.Cortex-MThe series processor itself is also conscious
of standardization.CMSISIt is also designed to accommodate differences in
microcontrollers for easier software reuse. Also CMSISIt also has the advantage
of making it easier to participate in the standard because it is a guideline and
does not require certification.

-48-

3.3 About debugging

Bicycle that doesn't fallARMversion of CPU TMPM332FWUG(Cortex-M3)has a debug
interfaceCoreSightis built-in, which iIsSARM Cortex-MThis is one of its major features.
CPUlIn- circuit emulator as speed increasesI CENow that the practicality of
CoreSightteeth CPUWhile minimizing the burden on CPU Control, memory access ,
trace functions, etc.ICEIt has the same or better performance.

TMPM322FWUGhas a debug interfaceSWD (Serial Wire Debug)unit and trace output
EMT(Embedded Trace Macrocell)and SWV(Serial Wire Viewer)unit is included.

3.3.1 SWD overview
SWD teeth ARM The company Cortex This is a debugging tool developed

for Core Sightadopted in 2. It is a wire communication interface, JTAGcan be
substituted for Debug control with bidirectional data signal (SWDIO)A clock
synchronized with (SWCLK) of 2 do it with a book ARM This is a proprietary serial
interface. PhysicallyI2C Semi-similar to bus communication2Heavy communication.

3.3.2Selecting a debug interface

As a debugging interface SWD When you select JTAG Compare with table3.4 As shown
in the figure, the number of terminals to connect the debugger is reduced, which

has the advantage of reducing the connector mounting area on the board.

T | e
TCK SWCLK(TCK)
TMS SWDIO(TMS)
T.D.O. Not used
TDI Not used
TRST Not used

table3.4 Debug interface terminal name

However, all 2 Two-way communication JTAG Although it is not completely
equivalent to Core Sight It can correspond to Debugger manufacturers provide
optional connectors that are compatible with both, so you will need to select the
interface that your device has. TMMP332FWUG teethSWD Built-in debug interface.

3.3.3Trace function

The trace function ETM(Embedded Trace Macrocell) and SWV(Serial Wire
Viewer)of2 There are different types.ETM Regarding tracing CPUtoETM cannot
be used without this unit.

-49.

Both allow tracing without affecting the CPU program, but there are differences
In the timing and content of the trace. TMMP332FWUG supports ETM and SWV
tracing.

Table 3.5 ETM trace and SWV trace overview.

ETM Swv
Required wiring 2~5 pieces 22 pieces
Impact on user programs none none

Program counter

trace timing transition timing

clock frequency

Because it depends on the

The error is clock frequency, the error
Trace accuracy extremely small increases if the program
counter has many transitions.
Timestamp accuracy There is an error No error
o Proportional to the number | Large amount of data or
Missing trace data . depends on host PC
of wires performance

Table 3.5 ETM trace and SWV trace summary

Below are the characteristics of ETM traces and SWV traces.

3.3.3.1 About ETM trace
The timing diagram of ETM traceis shown below.

function 1 S —e — %

function 2 <

fUNCLION 3 sl il il iediniionis

Figure 3.9 ETM trace timing diagram

If you look at the ETM trace timing diagram in Figure 3.9, you can see that the
data trace timing is traced at the timing of a function transition (program counter
change). Therefore, it is possible to understand the execution path of the program,
and with high real -time performance, it is possible to trace the status of the
system when it is operating at maximum speed.

3.3.3.2 About SWV tracing
A timing diagram of SWV trace is shown.

50

function 1 o x s A T,

fUI’lCtIOﬂ 2 rmmrnnn e e —— e I S— S————C R SR FRNNE .

function3 TV (R RS (e T

Figure 3.10 SWV trace timing diagram

If you look at the Figure 3.10 SWV trace timing diagram, you will notice that the
trace spacing is always the same. This is because the SWCLK signal is used to set
the trace spacing. Therefore, it can be said that tracing is not possible for
functions that finish faster than the SWCLK speed. As a countermeasure, it may
be possible to deal with this by increasing the SWCLK clock speed, but this will
increase the amount of data and may cause trace data to be lost.

3.3.4 Limitations of real-time debugging

The real-time debugger has useful functions such as breakpoints and step
operation. However, when debugging embedded devices, the CPU operation and
I/0 operation do not match, so even if you step monitor the CPU side, you cannot
stop the I/0. Since the main task of embedded devices is I/0 control, this
debugging work also requires some technique. For example, you can store the I/0
operation history and CPU operation status in memory, and perform a memory
dump of one cycle of I/O operations.

51

Chapter 4 Program structure

This chapter explains the program structure for embedded control equipment.
PC programs running on Windows OS have large task processing units, so they
often keep the operator waiting while the task is being executed.

However, with embedded programs, the object to be controlled is a machine, and
programs are written to ensure the execution speed required by the machine,
without making the machine wait. Although it is possible to write a control
program using an embedded OS such as nlTRON, here we will explain the
structure of a program that independently controls a microcomputer.

4.1 Task control

Let's use examples of single-tasking and multi-tasking programs to understand the
problems with single-tasking structures.

4.1.1 Traffic light control using single task

[+]

signal push roadway signal Pedestrian Signs

button Photo 4.1 Traffic light

siren patrol light Security push button SW
Photo 4.2 Security siren=pat light

Photo 4.1 shows a push-button pedestrian signal, and the roadside signal is
blinking yellow.

Photo 4.2 shows a security light warning device installed on a traffic light pole that
is only used in certain areas of Japan.

If you press the push button SW attached to the traffic light pole when you are
being followed by a suspicious person, the siren and patrol lights will intimidate
and repel the suspicious person.

First, let's consider the traffic light program.

Figure 4.1 shows the single-task control flow diagram for the traffic light shown in
Photo 4.1, which has a pedestrian push button (PB) switch, the road side is

flashing yellow, and the signal is waiting for an input to the pedestrian push
button (PB) switch.

52

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

Signal light display status (1) and (2) are blinking yellow. A 1 second loop timer is
running in a loop to keep track of the time while monitoring the status of the
pedestrian push button (PB) switch between blinking display states (1) and (2).
In display status (3), (4), and (5), the signal changes from blue to yellow to red, but
the loop timer is still taking time during this time.

Next, let's consider the problems with the single-task structure.

@D It is necessary to write the same routine in multiple places, such as checking the
pedestrian push button (PB) switch and loop timer, making maintenance time-
consuming.

@The computer is only killing time with a loop timer and is not doing any real
work.

(@ When writing additional programs, the same routine must be added to each loop
timer. When a program is added to the loop timer, the loop timer value changes,
and the counter value must be adjusted each time.

Here, we used the waste of a loop timer as an example to explain why programs
with a single-task structure are not practical. Did you understand?

Next, let's add a security program to the flow diagram in Figure 4.1.

Let's consider a program that constantly monitors the state of the security push
button SW and activates the siren and patrol lights for 3 minutes when the
security push button SW is pressed.

It will be difficult!

53

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

3]
yellow light ON

red light-blue light OFF
Pedestrian lights RED
30 second loop timerSET

| S —

Loop Timer DEC

yellow light ON
red light-blue light OFF
Pedestrian lights RED
10 second loop timerSET

| S——

Loop Timer DEC

5
yellow light ON k

red light-blue light OFF
Pedestrian lights BLUE
30 second loop timerSET

H

Loop Timer DEC

Loop
Timer=0

1
yellow light ON k

red light-blue light OFF
Pedestrian lights RED
1 second loop timer SET

\Z

[
Loop Timer DEC

Pedestrian PB
With flag

2
vellow light OFF k

red light-blue light OFF
Pedestrian lights RED
1 second loop timer SET

¥

Pedestrian

PB ON

Pedestrian PB flag ON

Loop Timer DEC

With flag

Pedestrian

PB ON

Pedestrian PB flag ON

Figure 4.1 Single-task signal control flow diagram

4.1.2 Traffic light control by multitasking

Multitasking without an OS creates an infinite loop in the main routine as shown
in Figure 4.2, and while going around in the main routine, it checks the start
conditions of each task (thread), and if the conditions are met, it executes the

corresponding task (thread). In assembly code, an infinite loop is created by

returning from the last line of the main routine to the first line with JP MAIN.

When written in C language, for(:;) or while(1) is used within main().

54

In the main routine for signal control

shown in Figure 4.2, the 10ms, 100ms,

and 10ms time event flags are checked

10ms
With event
flag 1

10ms Event flag 1cleared in sequence while looping around in
CALL SINGO (Figure4.5) the main routine. When a time flag is
set , the program goes to the

corresponding thread, first turns the

100ms
With event
flag

100ms Event flag cleared .
CALL TIMER! (Figured4) time flag OFF, executes the thread

once, then returns to the main routine
and resumes checking the time flag.
10ms Event flag 2 cleared In this way, each task (thread) SINGO,
CALL SW_CHK 1 (Figure4.3) .

TIMER, and SW_CHK is executed.
You can also add any program to the

10ms
With event
flag 2

CALL OPTION) <— Add additional tasks here CALLOPTION position in Figure 4.2.
Section 4.1.3 shows an example of
adding a crime prevention program

Figure 4.2 Signal control main routine (BOUHAN).

Next, we will explain the SW_CHK, TIMER, and SINGO threads.

(1(SW_CHKD)

It checks the status of the pedestrian push button (PB) switch, and if it is pressed, it
turns the pedestrian PB flag 'ON' (Figure 4.3).

(2) (TIMER1

The timer counter value is decremented in 0.1 second increments until it reaches 0 (Figure 4.4).

SW_CHK1 TIMER1

Pedestrian Is the
PB = ON counter at
07?
Y N
; D, t the
‘ PedestrianPB flag ON | prohibi?i((:)rr?rgr?wnerA counter
by 1
RET
RET
Figure 4.3 Pedestrian PB check Figure 4.4 Timer A Counter DEC
. No. Traffic light status
(3)(SINGO) (Fig.4.5)
. . . 0 Before display settings
This controls the lighting status of the
. . . . 1 Yellow flashing traffic light yellow light 'ON'
signal. The display status of the signal is -
. . 2 Yellow flashing traffic light yellow light 'OFF'
managed by assigning a status number as
Shown in Table 41 Please I'efer to the 3 Green light 'ON' on a green-yellow-red traffic light
dlsplay number in Figure 4.1. 4 Yellow light 'ON' on a green-yellow-red traffic light
5 Green, yellow and red traffic lights in red 'ON' state

Table 4.1 Traffic light status

55

After waiting for the time set by the execution prohibition timer, the traffic light
will perform the following actions:

(DNormally, the roadway signal is flashing yellow, and the pedestrian signal is red
(no crossing), and it is waiting for an event in which the pedestrian's push button
(PB) switch is pressed. State 1 ¢ 2@When the pedestrian's push button (PB)
switch is pressed, the pedestrian PB flag turns 'ON', control moves from state 1, 2
to state 3, 4, 5, and state 3 is set. @From each state of state 3, 4, 5, the execution
prohibition timer waits for a time, the roadway signal switches from green to
yellow to red, and when the roadway signal is red, the pedestrian signal turns
green, then returns to flashing yellow, and state 1 © 2 is repeated, waiting for a
push button (PB) input.

SINGO

Pedestrian PB
With flag

Y yellow light—ON, red-blue light— OFF
Pedestrian Signs—red RET

Inhibit timer=1seconds, situationNo.— 1

situation
No.=2

yellow light—ON, red-blue light—OFF
Pedestrian Signs—red RET

Inhibit timer=1seconds, situationNo.— 2

situation
No.=1

yellow light—ON, red-blue light—OFF
situationNo.=3 Pedestrian Signs—red RET

Inhibit timer=10seconds, situationNo.— 4

redlight—ON, blue-yellow light— OFF
Pedestrian Signs—blue RET

Inhibit timer=230secondsset,situationNo.—5

situationNo.=4

yellow light—ON,red-blue light— OFF
. . _ Pedestrian Signs—red
situationNo.=5 Inhibit timer= 1seconds set,situationNo.—1

Pedestrian PB flag— OFF

blue light—ON,yellow-red light—OFF
Pedestrian Signs—red RET
Inhibit timer=230seconds set,situationNo.—3

Figure 4.5 (SINGO)control by state number

56

4.1.3 Adding a security program

The CALLOPTION section of Figure 4.2 shows an example of adding a program
called BOUHAN that activates a siren and a police light for three minutes when the
security push button is pressed.

Addendum 1: Following SW_CHKI1, add Figure 4.6 Security PB Check SW_CHK2.
Addendum 2: Following TIMER1, add Figure 4.7 Timer B Counter DEC TIMER2.

TIMER2

SW_CHK2

Crime Prevention RET
PB= O
Y
Crime Prevention PB flag ON ‘ Decrement the prohibition
timer BOUHAN counter by 1
RET

RET

Figure 4.6 Crime Prevention PB Check Figure 4.7 Timer B Counter DEC

BOUHAN

Addendum 3: Add BOUHAN to the CALL
OPTION position in the same way as SINGO,

using a 10ms event flag. The crime
prevention program also uses state numbers.
State number O is the switch input waiting
state, and state number 1 is the siren and
police light are activated, and the crime
prevention program is in progress.

crime prevention
PB flag
Y

crime preventionPB flag OFF
stuation — No.1

Inhibit timerB 3minutes set
siren* patlite ON

RET
o - N
situation No.=3 RET

Y

situation No.—0
Siren* Patlite OFF

RET

Figure 4.8 Crime prevention control program

57

Y %k summaryk %k

To maximize the performance of a microcomputer system, one task must not
monopolize CPU resources. Each task and interrupt uses a single CPU at a set
time (time sharing), so the golden rule is that each task must borrow the CPU
from the main routine and immediately return it to the main routine when it has
finished its work. The CPU must not be used as a loop timer or to wait for I/0.
CPU resources are the shared property of the computer system.

4.2 Program Structure

When dealing with embedded programs, it is essential to understand the
transition from CPU startup to main(), as well as the multitasking that you create
yourself by manipulating the main routine, interrupts, and subroutines. Even
when configuring multitasking using an embedded OS such as p ITRON or Linux,
the primitive multitasking introduced here is the starting point.

(1) Vector Table Vector.s

DCD Reset_Handler
DCD NMI_Handler

Vector address jump

_+—DCD INT_IRQHamdler (4) Interrupt Service Routineé

NT_IRQHandl
(2) Initial Routine By ?n er()

}

Reset_Handler
System Initials
I/0 initial
main ();

CALL main
(3) Main Routine

main (void){ (5) CALL subroutine

for (; ;)1 /
LS SCAN() {

PSCAN() |
. =
}

Figure 4.9 Program Structure (1)

}

58

4.2.1 Primitive multitasking

Since both the TLCS-900 and the Cortex-M3 are vector-activated, the program
structure is composed of (1) the vector table to (5) subroutines as shown in Figure
4.9, and the transitions from startup to main() and within main() are also
performed in the same way.

Boot vector to PC

Initial Routine
JP main

main

Interrupt
occurs

Main Routine
for(;;)
SUBT SUB1 | RET
Call Conditions execution
N Interrupt Service Routines
INT.RQ ()
SuB2 | RET {
execution }
TSK3 | RET
execution

Figure 4.10 Program Structure (2)

Primitive multitasking enters the main routine after the CPU is started and
initialized, as shown in Figure 4.10. The main routine 1is an infinite loop that goes
around and around, checking the execution conditions of tasks, subroutines, etc.,
and executing them if the conditions are met.

Also, when an interrupt request occurs, the corresponding interrupt service
routine is executed. Multitasking is achieved by distributing CPU resources
smoothly among tasks, subroutines, and interrupts executed from the main
routine, and using them skillfully. Next, we will explain each program block (1) to
(5) in Figure 4.9. Please use an editor to visually trace the included program and
read the overview of each program block.

(1) Vector table

The vector table is a list of jump destinations when an interrupt occurs. The
TLCS-900 has the vector table located at address FFFFOOH , while the Cortex-M3
has the vector table located at address 0 by default.

List 4.1 Example of a vector table for Cortex-M3

vector_table DCD STACK : Stack Pointer
DCD Reset_Handler ; Start address
DCD NMI_Handler :Non—maskable interrupts
DCD INTIRQHandler interrumt

59

In the case of Cortex-M3, a vector table with one data item of 4 bytes is placed
from address OH as shown in List 4.1. Address OH is the initial value of the stack,
and Reset_Handler at address 4H describes the start address of the initial
routine in which the system initials and I/O initials are described as shown in
Figure 4.9. Copying this value to the program counter jumps to the start of the
Initial routine. Addresses up to 3CH are system interrupt frames such as debug
interrupts, and from address 40H onwards, interrupt vectors from I/O provided by
the device vendor are placed.

List 4.2 Vector table example for TLCS-900

The TLCS-900 vector table is
located from address FFFFOOH as
FFFFO4H SWI_1 : Software Interrupts1 shown in List 4.2, with the system-

related vector area up to address

FFFFOOH START ; Startup Vector

FFFFO8H SWI_2 ; Software Interrupts2 .
FFFF1CH and the normal interrupt

FFFFOCH SWIL_3 ; Software Interrupts3 vector area from there.

FFFF10H SWI 4 : Software Interrupts4

FFFF14H SWIL5 ; Software Interruptsb

FFFF18H SWIL6 ; Software Interrupts6

FFFF1CH SWL7 ; Software Interrupts?7

FFFF20H NMLINT :Non—maskable interrupts

FFFF24H WDT_TIME ; Watchdog Timeout
FFFF28H INTO_Z ;INTOExternal Interrupts

FFFF2CH INT1.Z ;INT1External Interrupts

(2) Initial routine
The actual allocation address value of the first line of the initial 1is written in the
reset vector, and when the CPU is reset, the reset vector is copied to the program

counter and the fetch of the initial program begins. The initial setting of the
embedded CPU first sets the multiplication of the system clock oscillation circuit
and operates the CPU with the normal clock. This is a method of creating a high-
frequency system clock by analog processing of a clock with an original oscillation
of about 10MHz. For example, multiplication such as multiplying the original
oscillation of 10MHz by 8 to create 80MHz, and then dividing it by 2 to create a 40
MHz system clock to adjust the waveform 1s commonly done in embedded CPUs.
Next, set the dual-purpose terminal to a dedicated I/0O terminal or a general -
purpose input/output port according to the purpose, and then perform detailed I/0
settings. This work should be done carefully according to the purpose of use, with

the instruction manual of each manufacturer in hand. Finally, jump to main().

60

(3) Main routine

As already explained in Figure 4.9 and Figure 4.10 "Program structure", the main
routine goes round and round while waiting for the condition to be called by the
subroutine.

This round and round seems wasteful at first glance, but it is the best way to divide
the CPU resources equally among each routine and task.

When each routine or task finishes its work, it promptly returns the right to use
the CPU to the main so that other routines and tasks can use the CPU immediately

By not monopolizing the CPU, the entire program can run smoothly.

(4) Interrupt service routine

When an interrupt request occurs, the main routine in Figure 4.9(3) stops the work
it is running round and round, and the interrupt service routine in Figure 4.9(4)
described in Figure 4.9(1) Interrupt table address specified by interrupt cause is
executed as a priority.

The interrupt execution sequence will be described later. Interrupt service routines
are extremely nuisances because they forcibly take away the right to use the CPU
from the main routine without any delay.

Write the program in the interrupt service routine simply and return the right to
use the CPU to the main routine as soon as possible.

(5)Interrupt execution sequence

An interrupt is a subroutine call whose jump destination is specified in advance by
a vector table, etc.

When executing an interrupt, various procedures such as register evacuation are
required, and generally, the TLCS-900 is determined by the programmer, while the
Cortex-M3 is determined by the compiler, as follows.

-TLCS-900 interrupt execution sequence

1Interrupt cause occurs

2)Read interrupt vector value

3)PUSH PC, PUSH SR, interrupt level +1 to current
4)PC «vector value

5)Interrupt processing program starts from here
Evacuate registers as necessary

Evacuate registers at the discretion of the programmer using the PUSH command
or switching register banks

Execute interrupt processing
POP for PUSH of register evacuation is performed here.

6) RETI command execution

POP SR, POP PC, register bank restoration, interrupt level restoration is
automatically performed before interrupt

7) Interrupt sequence ends

61

+ Cortex-M3 interrupt execution sequence
1) Interrupt factor occurs
2) Stacking

When an interrupt is detected, the compiler automatically stacks in the order PC,
PSR, RO, R1, R2, R3, R12, and LR.

This allows the interrupt handler to be written as a normal C function.
3) Vector fetch

Since the Cortex-M3 is a Harvard architecture, stacking (using the data bus) and
vector fetch (using the instruction bus) are performed at the same time.

4) Preparation and execution of interrupt processing

SP and PSR are updated according to interrupt execution
Vector address is copied to PC

LR is updated for interrupt

Interrupt processing is executed

5) Return from interrupt

When the compiler detects the last } of a C function, it automatically issues BX LR:
POP [xx], etc., and unstacking, etc. is also executed.

4.2.2 Task Management

In the primitive multitasking structure shown in Figure 4.10, the programmer
manages multiple subroutines and tasks using the following methods:

(1) Inter-task access

Each task is linked by a global shared
memory, as shown in Figure 4.11.

You need to be careful about when you
rewrite and reference the shared
memory.

There is a big difference in speed
between tasks managed by I/O and
tasks managed by the CPU, so use an I/
O ready flag (similar to a semaphore) to
share data.

Figure 4.11 Inter-task access

(2) Priority

The priority between tasks in a primitive multitask is managed by the interrupt
request level and interlocks within the main routine, as shown in Figure 4.12.

As shown in Figure 4.13, if an interrupt occurs while a task in the main routine is
being executed, the task being executed in the main routine is interrupted and the
Interrupt task is forcibly executed. Furthermore, if an interrupt with a higher
priority occurs, the currently executing interrupt task is also interrupted, and the
higher priority interrupt task is executed first.

62

Interrupt request

] Priority level 2 occurred
Non—-masked interrupt High J
. R A
Highest interrupt request B Interrupt request 2 end
level
I I
- .] 1
[] Interrupt request 1 end
] , Suspended Resume |
I
Lowest interrupt request u Main Routine :§uspended Resume \:
level u !
Main Routine Low Interrupt request
level 1 occurs

Figure 4.12 Execution Precedence Figure 4.13. Overriding Interrupts

4.3 Assembler and C Compiler Behavior

The TLCS-900 version of this bicycle teaching material writes the same bicycle
control program in assembly language and C language, and the label names of both
languages are unified as much as possible, so it is easy to compare the two
languages. Furthermore, you can read the assembly file generated by C language,
so by comparing a program written in assembly language with the assembly
generated by C, you can see the structure of C language.

This is a very interesting teaching material for understanding program structure.

By reading this section, you can understand how to write arguments and return
values of C functions and how to use stack frames.

4.3.1 Arguments and return values (1)

Specific examples of function arguments and return values are explained in /*Check
manual steering angle deviation*/ HND_HDL(void) in List 4.3, List 4.4, and List 4.
5.

List 4.3 is an example of a function call written in C language. The function WA_
max65 (int wa) is called with an argument (Hangle-re) and an int return value is
obtained.

List 4.3 Arguments and return values (1) C language source

/*Manual handle angle deviation check*/

void HND_HDL(void){ int wa; // Manual Handle Control

Hangle buf = WA_max65(Hangle_rc);
wa = Hangle_buf — Hndl_feedback;
if (wa >= 0){

L side(wa);

else{
R_sid}e(wa);

}

if (wa >= 0){
if (wa < 650)(

/*Handle angle upper and lower limit adjustment*/
int WA_max65(int wa){ // Handle angle upper and lower limit adjustment

// Handle angle upper and lower limit adjustment
// Deviation = Order — Feedback

// ls the deviation positive?

// Check deviation on left rotation side

// ls the deviation negative?
// Check deviation on right rotation side

// Right?
// Less than 650?

68

return(wa); // Return it as is
]
return(650); // Return 650
} // RET
else{ // negative?
if (wa >= —-650){ // =650 or more?
return(wa): //Return it as is
} // Return —-650
// RET
return(-650);
}
]
initialXSP— 0 Listing 4.4 is the assembly listing
B g generated by C.
The argument _Hangle_rc is passed via the
2 stack and referenced by 1d HL, (XSP+0x4).
-3 The return value is returned in the HL
Stack PCs . .
4 register, so when returning from the
WA function call, a stack frame adjustment inc
max65 — -5 .
Running XSP 0x2,XSP is performed.

Figure 4.14 WAmax65 running stack

Listing 4.4 Arguments and return values (1) C compiler generated ASM

_HND_HDL:
pushw
cal
inc
Id
sub
J
push
cal
inc
ret

L74: push
cal
inc
ret

WA _max65:
Id
cp
J
cp
ret
Id
ret

L47: cp
J
ret

L49: Id
ret

((Hangle_rc)
WA _max65
0x2,XSP
(_Hangle_buf),HL

HL,(_Hndl_feedback)

It,L74
HL

L _side
0x2,XSP

HL
"R side
0x2,XSP

HL,(XSP+0x4)
HL,0x0

It,L47
HL,0x28a

It

HL,0x28a

HL,0xfd76
It,L49

HL,0xfd76

;Arguments to stack push
:Call Function
:Adjust stack frame by 2 bytes

:See argument _Hangle_rc

;650

:650

;64886 / -650
;64886 / -650

64

List 4.5 1s an example of direct address-specified assembly language that contains
the same content as the C language source in List 4.3.

When writing programs in assembly language, arguments and return values are
generally passed in registers. Variables that are specified with a register width
type at the start of a block of tasks are reused as much as possible within that task
(as local variables) and the final results are stored in memory (as global variables).
Although there are portability issues, this generates the most efficient code.

List 4.5 Arguments and return values (1) Assembly source

HND_HDL: LD BC,(1070H) ;LD Handle Feedback+-1023
LD WA, (1034H) ;LD Handle Order +-650
CAL WAmax65 :MAX CHK, +- 700 —> 800 The following
LD (1036H),WA to Handle Order Output BFF
SUB WA,BC :Comment = Order — Feedback
J GT,L_side :Left hand side of the wallCHK
J R_side :Right hand side of the CHK
RET

; MAX CHK, WA7 +- 650 14t 2

WAmax65: CP WA,650 :Plus River max CHK
J GT,P650WA ‘max
CP WA,—650 :Minus Rivermin CHK
J LT,N650WA :min
RET

P650WA: LD WA,650
RET

N650WA: LD WA, -650

RET

4.3.2 Arguments and Return Values (2)

The handling of arguments and variables will be explained using the 10m x n
countdown timers TIM10 and AUX_T.

List 4.6 shows the 10m x n countdown timer TIM10(), the countdown portion of the
timer counter AUX_T() called by TIM10(), and an example of how to use the TIM10()
timer RtrnLIM().

TIM10() is a task that starts once every 10ms.

From here, call the down counter AUX_T(T_10ms,4) with the 4-byte array T_10ms as
an argument.

RtrnLIM() is set to 10ms x 50 = 500ms, and write a program that runs once every 500
ms.

65

List 4.6 C language source for 10msec x n timer

}

/*Right steering angle limit correction addition*/ // Example of using a 10msec x timer

void RtrnLIM(void){ // Add right turn steering angle limit
if (T_10ms[1] '= 0)}{ // Steering angle limit prohibition timer is not 0?
return; // escape
}
T 10ms[1] = 50; // Steering angle limit prohibition timer=50(500ms)

//Write a program that runs once every 500ms here

/*10msecTimer Processing*/

}

void TIM10(void){ // 10msTimer Processing
T10ms_flag &= Oxfb; // 10msTimer Flag Reset
AUX_T(T_10ms, 4); // Timer subtraction (set 0 to 4 bytes from T_10ms)

/*Timer value batch setting*/
/*Various timers are counting.*x/

void AUX_T(unsigned char *t_cnt, unsigned char c){

while (¢ > 0){
if (tentlc—1] '= 0){
tentlc—-1]—;
}
c—
}
}
initialXSP— 00
4 bytes
04
00
00 T 10ms{1}
ASM sample
60 equivalent to
1060H
10
return
PC
AUXT — XSP

RunningXSP

Figure 4.15. Stack during
AUX_T execution

List 4.7 is the assembly listing generated
by the C language source in List 4.6.

The 6-byte argument is pushed three
times, passed to AUX_T via the stack, and
referenced by (XSP+0x8) and (XSP+0x4).

There is no return value, and the globally
declared array T_10msi{4} is directly
rewritten, so stack frame adjustment inc 0
x6,XSP is performed when returning from
the function.

The TLCS-900 is a CPU separated into a
register machine, and addressing via
registers and directly to memory is
powerful, but stack addressing is still a bit
weak. In my personal opinion, I don't see
much benefit in the TLCS-900 compiler
passing arguments via the stack.

66

Listing 4.7 C compiler generated ASM for a 10ms x n timer

_RtrnLIM: ;1Example of using Omsec x n timer
|da XBC,_.T_10ms + Ox1 :Check the current location of the timer counter [1]
Id A(XBC)
cp A,0x0
ret ne If not 0, RET
L79: 1
Idb (XBGC),0x32 :Timer counter[1]<—Reset 50
ret :‘Write a program that runs once every 500ms here
_TIM10:
res 0x2,(_T10ms_flag) ;Called with the 10 ms flag and turns the 10 ms flag OFF
pushw 0x4 :Pass 4-byte array number as argument
pushw _T_10ms >> 16 :Pass the top of the array as an argument twice
pushw _T_10ms & Oxffff
cal CAUXCT :Call timer subtraction routine
inc 0x6,XSP :Stack frame adjustment 6 bytes
ret
AUX_T:
Id E,(XSP+0x8) :Sequence number reference
cp E,0x0
ret eq
L4: ;2
Id AE
extz WA
dec Ox1,WA :Number of sequences—1
Id XBC,(XSP+0x4) (Number of sequences — 1) + sequence top
Ida XBC,XBC+WA :XBC=Array pointer
Id A,(XBC) :DEC each array to 0
cp A,0x0
] eq,L5
dec Ox1,A
Id (XBC),A
L5 ;2
dec Ox1,E :Decimate the number of sequences
j ne,L4 ;0 to RET
L3: ;1
ret

Listing 4.8 is an example of direct address specified assembly language that
contains the same content as the C language source in Listing 4.6.

Comparing Listing 4.7 and Listing 4.8, you can see that using assembly language is
overwhelmingly more efficient and easier to debug for compact embedded programs

that do not make heavy use of C language library functions.

However, assembly language cannot handle areas that require OS dependency,

such as Ethernet and ATA.

When developing embedded devices, choose the right CPU, development language,
and OS for the right place. Bigger does not fit smaller, and smaller does not fit

bigger.

67

Listing 4.8 Assembly source for a 10ms x n timer

;Right turn steering angle limit increment; Example of using 10msec x n timer

RtrnLIM: CP (1061H),0 :10msec counter check
RET Nz If not 0, RET
LD (1061H),50 ‘Reset 10msec x 50

:‘Write a program that runs once every 500ms here
RET

:Called from the main routine with a 10msec trigger

TIM10: RES 2,(1002H) :10m seconds flag OFF
LD XHL,1060H :Array top address
LD W4 :Number of sequences
LD AOQ ;DEC to 0
CAL AUX_T :Call subtraction routine
RET
AUX_T: CcP A,(XHL) :Check the contents of an array
J Z,LVAUX :0 at JP LVAUX
DEC 1,(XHL) :Not 0, 1DEC
LVAUX: INC 1,XHL :Array pointers INC
DEC 1W ;Number of sequences DEC

J NZ,AUX_T;If the number of arrays is not 0, JP AUX_T

RET ;0 to RET

4.3.3 Type conversion by casting

Variables used in C language programs are declared in advance, but there are
cases where a temporary type change is required due to program or compiler
reasons.

The cast operator is used to change the type of a variable and perform a forced type
conversion.

The following example of using a cast is shown using multiplication and division of
INT type.

In assembly language, the concept of variable type and size is not very prominent,
so multiplication and division are expressed using the following types and sizes,
and the presence or absence of a sign is determined by the most significant bit of
the instruction and data.

Signed multiplication MULS dst,sre, unsigned multiplication MUL dst,src
Signed division DIVS dst,src, unsigned division DIV dst,src
Multiplication: 16 bits x 16 bits = 32 bits

Division: 32 bits + 16 bits = upper 16 bits are the remainder, lower 16 bits are the
quotient

Since the C compiler has some indeterminate elements when mixing variable sizes,
the following Lists 4.9, 4.10, and 4.11 explain examples of how to deal with this
using cast operators.

S3S4def() in List 4.9 uses the variable wbc declared as an int to perform
multiplication and division as in the assembly in the comment line.

S3S4chg() in List 4.9 uses the cast operator to specify the multiplication result as
long and the division result as int.

Let's check the results in List 4.10.

68

List 4.9 Cast usage example C language source

int S3S4def(int be)
int wbc;
wbc = bg;
wbc *= 5000;
wbc /= 1000;
Correct_add += wbc;
return(wbc);

}

int S3S4chg(int bc)
int bec_buf;
long wbc;
bc_buf = bg;

wbc
wbc = wbc / 1000;
Correct_add += (int)wbc;
return((int)wbc);

}

int S3S4(int bc)
int wbc;
if ((AD_flag & 0x04) '= 0){
wbc = S3S4chg(bc);
return(wbc);
}
wbc = S3S4def(be);
return(wbc);

}

(long)bc_buf * 6000;

//No cast conversion

// MULS XBC,5000
// DIVS XBC,1000
// ADD (1084H)BC
// RET

//With cast conversion

// MULS XBC,6000
// DIVS XBGC,1000
// ADD (1084H),BC
// RET

//

// BIT 2(102FH) 1=CHG, 0=Default
// J NZ,S3S4chg
// RET

// J Z,S3S4def
// RET

Listing 4.10 is the assembly listing generated by the C language source in Listing 4
9.

_S3S4def: multiplies the argument passed as an INT by 5000, and then bit-extends
the upper 16 bits of the answer from the lower 16 bits, so the 32 bits divided by 16
bits performed on the next line is not the intended result.

_S3S4chg: uses the C compiler library for multiplication and division, but casts the
result of multiplication to long and the result of division to int, so the intended
value is obtained for the results at the end.

Listing 4.10 Example of using casts with C compiler generated ASM

_S3S4def:
Id WA (XSP+0x4)
muls XWA,0x1388
exts XWA
divs XWA,0x3e8
add (_Correct_add),WA

5000
:bitExtension
:XWA/1000=qwa remainder,wa

Id HL,WA
ret
_S3S4chg:
Id WA, (XSP+0x4)
exts XWA
Id XBC,0x1770 ;%6000
cal C9H_mulls ;Multiplication Library xwa*xbc=xhl

69

Id XWA XHL

Id XBC,0x3e8 ;/1000

cal C9H_divls :Division Library xwa/xbc=xhl
Id WA HL

add (_Correct_add),WA

ret

~S3S4: omission ret

Listing 4.11 is an assembly language listing similar to Listing 4.9 above.
Division instructions always carry the risk of overflow.

The programmer must either manage the range of numbers used or take other
measures, such as monitoring the overflow flag.

Listing 4.11 Assembly source for a cast example

S3S4: BIT 2,(102FH) ;FLG CHK: 1=CHG, 0=Default
J NZ,S3S4chg :conditions, SET, S3 ON
BIT 2,(102FH) :FLG CHK: 1=CHG, O=Default
J Z,53S4def :Default, RESET, S4 ON
RET
S3S4def: MULS XBC,5000 :bc*5000=xbc
DIVS XBC,1000 :xbc/1000=gbc,bc
ADD (1084H)BC
RET
S3S4chg: MULS XBC,6000 6000
DIVS XBC,1000 ;/1000
ADD (1084H),BC :xbc/1000=gbc,bc
RET

4.3.4 Explanation of arrays

List 4.12, List 4.13, and List 4.14 are used to explain examples of compiling arrays.
Arrays are variables that can handle multiple data of the same type together.

In this example, we use the array declared as follows in the header file ram27def.h:

EXTERN unsigned char RX0_RES_BUFI[6]; // RXO0 receive buffer

The exclusive OR value of arrays [1] to [3] is compared with the checksum value of
array [4] to check for errors in serial communication from the remote control.

This example shows only the checksum calculation part.

The C language source in List 4.12 uses an array to calculate the checksum. List 4.13 is
an assembly list generated by the C compiler.

There is a little waste in the addressing.
List 4.14 is a checksum calculation list written in assembly language. The addressing
uses "register indirect post-increment".

70

List 4.12 C source code

// TrmCHK() Checksum calculation using arrays Excerpt //
a = RX0_RES_BUFI1]; // CHK SUM START ADDRESS
a "= RX0_RES_BUF[2]; // XOR A (XHL+)
a "= RX0_RES_BUF[3]; // XOR A (XHL+)
if (a '= RX0_RES_BUF[4]){ // Checksum abnormal? CP A,(XHL)
MOSETRO(); // Err Processing status reset
return; // escape

Listing 4.13 C-Compiler Generated ASM

_TrmCHK: ; Checksum calculation part excerpt

Ida XIX,_RX0_RES_BUF ;Start address of array RXO_RES_BUF
Id C,(XIX+0x1) ;CHK SUM START ADDRESS
Id w,C

Ida XDE, XIX+0x2 :a "= RX0_RES BUF[2]

Id A,(XDE)

xor WA

Ida XHL,XIX+0x3 ;a "= RXO0_RES_BUF[3]

Id A(XHL)

xor WA

cp W,(XIX+0x4) ;a '= RX0_RES_BUF[4]

j ne, MOSETRO

Listing 4.14 Assembly source

TrmCHK: | Checksum calculation part excerpt
LD XHL,1301H ;CHK SUM START ADDRESS
LD A,(XHL+) ;1301H START CHR
XOR A,(XHL+) ;1302H
XOR A(XHL+) ;1303H
CP A,(XHL) ;CHK CHKSUM
J NZ,MOSETRO ;Err

71

Chapter 5 Bicycle Control Architecture

This bicycle teaching material provides three types of programs that perform the
same control: 1) C language program for ARM, 2) C language program for TLCS-9
00, 3) Assembly language program for TLCS -900. The function names and label
names for each program are the same , and the control architecture is also the
same, so here we will explain each program together, listing the related function
names and label names for bicycle control.

5.1 Analog value initialization

The tilt and turning sensors used in bicycle teaching materials are relative value
sensors that have a large temperature drift, so before riding the bicycle, the drift
value must be corrected and the zero points of tilt and turning must be
established with the bicycle standing upright and stationary. Specifically, D
after turning the bicycle's power on, @ set the bicycle on the starting platform so
that the body is as upright as possible, and @ press the stop button on the
remote control, @ the sensor's automatic drift correction and zero adjustment
will be performed. During @ the automatic correction, the LED lamp mounted on
the bicycle's control board will flash, and when the automatic correction is
completed, the LED lamp will go out and standby is complete. Next , ® press the
start button, and the LED will light up continuously, and from there © raise the
accelerator knob and the bicycle will start moving.

5.1.1 Drift correction hardware

The tilt sensor and turning sensor used in the bicycle teaching materials are not
absolute value sensors , but angular velocity sensors that output relative values.
In addition, this angular velocity sensor is more susceptible to output changes
due to temperature drift than to changes in sensor output due to changes in
angular velocity, so as introduced in sections 2.1.1 and 2.1.2, it is a sensor that
requires some ingenuity in how it is handled. This angular velocity sensor
operates on a power supply voltage of 3 [V] and the output signal has a drift
element of about + 0.75 [V] centered on 1.35 [V], but the amplitude of the signal
due to angular velocity is small and an amplification factor of 100 times or more

is required. As shown in Figure 5.1, it is possible to

R; address this issue using an AC amplifier

with an added coupling capacitor C1, but
adding C1 will result in a high -pass

ouT
————0 filter (ow-cut filter) that will sacrifice the

frequency characteristics of the amplifier
circuit. Therefore, this teaching material

uses a method to correct the sensor drift
using the output of a serial DAC

Figure 5.1 Op-amp AC amplifier circuit ¢ontrolled by the CPU in a DC amplifier,
as shown in Figure 5.2.

72

Using an adder circuit

R consisting of an op amp , Rf,
@ Rl < . R1, a.nd R2in Figure‘ 52, a
Vrefe—1 * put polarity calculation is
GPU performed on the sensor
output and DAC output
serial Syr_whronous with Vref as the reference,
e serial VO and the output of the serial

DAC is adjusted so that the
average input value of the
ADC input terminal 1is near
the center of the ADC
input range (1 .65V).

Figure 5.2 Schematic diagram
of automatic drift correction circuit

5.1.2 Drift correction program

When a stop button switch command is received from the remote control, drift
correction is performed in the following order. The drift correction sets the ADC
input terminal voltage to about 1.65 [V], half of 3.3 [V], and the AD conversion
value Turn_base, Slope_base or (1042H), (1044H) at that time becomes the
reference value for the AD conversion input. After drift correction, the sensor
input value - reference value becomes the analog input value with polarity. O
Check the remote control status bit RC_Sbhit() Checks the stop order bit from the
remote control and jumps to RC_STP() if there is an order @ Jumps from
RC_STP() to Ana_RST(), which prepares the analog reset flag, etc., and turns
ON the reset flag for the tilt sensor and rotation sensor. The LED lamp starts
flickering. @ The 100ms flag routine TIM1000 calls FLICKO to execute flicker and
A_Reset() to execute analog reset at 100ms intervals. @ FLCK(causes the LED
lamp to flicker at 0.3s intervals while the flicker condition is met. ® A_Reset() is
called periodically from the 100ms routine and executes the following. If the tilt
sensor reset flag is set, it calls KEI_RST(to reset the tilt sensor in step ©®. If the
rotation sensor reset flag is set, it calls SEN_RST(to reset the rotation sensor in
step @. If there is no tilt/rotation reset flag, the current steering wheel position is
set as the steering wheel reference position and analog reset is complete. ®
KEI_RST(To find the tilt sensor correction value, it adjusts the serial DAC
output value with KEI_INC0 or KEI_DECQ to bring the ADC input value to
around 1.65 [V], and when it is within that range, it turns the tilt sensor reset flag
'OFF'. The calculation of ADC input value - reference value = polarized slope value
is performed within AD_AVEQ to create a value of approximately £500 bits, and
this is then accumulated eight times to create a value of £4000 bits.The ADC uses
a 10-bit ADC built into the CPU, and converts digital output values from 0 to 102
3 bits into analog-to-digital conversion.

78

The average calculation routine AD_AVE(performs eight integrations to obtain a
value between 0 and 8184 bits, and the reference value is subtracted from this
value to obtain polarized data of approximately £4000 bits. @ SEN_RST(To find
the correction value for the rotation sensor, the serial DAC output value is
adjusted with SEN_INCO or SEN_DEC, the ADC input value is set to
approximately 1.65 [V], and the rotation sensor reset flag is set to 'OFF' when it
enters the range. The calculation of the polarized rotation value (ADC input
value - reference value = polarized rotation value) is performed with TuenPIDO),
and the value is approximately +4000 bits.

5.1.8 Notes on drift correction

The drift amount of the angular velocity sensor used in this bicycle teaching
material can be large when the power is turned on or when the ambient
temperature changes. As explained in section 5.1.2, drift correction is performed
once when the stop button on the remote control is pressed in manual driving
mode, so if the drift amount is extremely large, it will go out of the range of +1.65
[V] in a short time and the bicycle will not be able to run normally. The bicycle
will not stop turning despite the control from the remote control. If this happens,
please stand the bicycle upright again and perform drift correction. The drift
amount will stabilize once the temperature of the sensor element stabilizes.

5.2 Handle operation

The handlebar operation of this bicycle teaching material is configured with
automatic balancing control that tracks the deviation between the order and
feedback to zero, as shown in Figure 5.3. In addition, proportional control is also
performed, which sets the tracking speed proportional to the deviation using a
PWM motor driver. Here, we will list the names of functions related to automatic
balancing using proportional control and explain mainly the software.

(1)Manual
Handle angle
. (4)motor m
(2)Automatic i —driver M) (5)Encoder
Handle angle handle
(3)Comparison operations motor
feedback

Figure 5.3 Handle operation block diagram

74

5.2.1 Overview of steering wheel control
We will now provide an overview of steering wheel control
for the automobile teaching materials shown in Figure 5.

3. (1) Manual steering wheel angle order
The remote control sends a six

uP -character message starting with the
0 A s n DN header $ shown in Figure 5.4 via
*
L START infrared communication, and 6 in the
— STOP .))
6 6 6 SSSSS message 1s the steering angle. This
Hand:\::;gle status string is handled by the array
8Bit Acceleration Position BIN RX0_RES_BUFI] or the (1200H) buffer.
000060000 The ‘st]?mg looks like this:
g 2Nl angle LSB $ This is the header. 0x24
L—nheader
6 The handle angle
Figure 5.4 Remote control message The 8 bits of the steering angle 6

byte and the upper 3 bits of the
status byte (a total of 11 bits) are
mixed in HDLangl() and the +800
-bit (1) manual steering angle is
stored in Hndl_angle or (1034H).

A Accel Byte Sets the driving speed as an
8-bit binary value.

S Status Byte
The upper 3 bits are the MSB of the
steering angle, and the lower 5 bits
are the status bits. Push button
switches are assigned to these bits.
h Checksum Value
Exclusive OR value of 6, A, and S

* Terminator 0x2A

For information about the optical remote control, see section 2.6 Remote Control
Receiver Module.

(2) Automatic steering angle order The steering angle during automatic driving is
calculated from the information from the tilt sensor, turning sensor, and speed
sensor, as well as the steering angle information from the remote control.

(3) Comparison calculation

Within the automatic handle AUT HDL(or manual handle HND_HDLJ(),
deviation = (handle order angle) - (feedback angle) is calculated. With the
deviation as an argument, if the order angle is large, the handle jumps to the
left rotation L_side(), and if the order angle is small, the handle jumps to the
right rotation R_side(), thereby setting up proportional control.

75

(4)Motor Driver

I [] B

H-bridge drive waveform at low speed

| L L

H-bridge drive waveform at high speed

Figure 5.5 Speed control by PWM

(5)Rotary Encoder

Fall Rise

o B S
s L1 L

Figure 5.6 Encoder output waveform

The hardware drives the steering
motor with a PWM-controlled H -bridge
proportional to the deviation.

The software uses the timer's square
wave output mode as shown in Figure 5
.5 with the L_side() or R_side()
settings, drives the H-bridge with a
pulse width proportional to the
deviation, and performs proportional
control by varying the motor speed. For

information on PWM control and the H-
bridge driver, see Section 2.4.

The bicycle teaching materials use an
AB-phase incremental type rotary
encoder, whose output waveform is as
shown in Figure 5.6, to detect feedback
of the handlebar angle.

The handle angle encoder is explained
in Section 1.2.2. Please refer to it. This
encoder is built into the handle drive
motor and generates 12 pulses per
rotation. When calculated from the
motor reduction ratio, 507.7 pulses are
generated for a handle angle of +70°.

In this bicycle teaching material , the rotation angle is detected at the falling and
rising edges of the A phase as shown in Figure 5.6 to further improve the

resolution, so 1015.4 pulses (+507. 7 pulses) are obtained for a handle angle of
+70°, enabling smooth handle control. Edge detection is performed by an
interrupt, and the encoder's pulse buffer Hndl_feedback or (1070H) is

incremented or decremented according to the direction at each interrupt. The

Iinterrupt function name is as follows:

TLCS—900

Falling interrupt — INT5_Z(), rising edge interrupt— INT6_Z()

ARM

Falling interrupt — INT1_IRQHandler(), rising interrupt — INT2_IRQHandler()

76

5.2.2 ON-OFF control and proportional control

Left deviation 1\
speed

Dead Zone

Figure 5.7 ON/OFF

Right deviation

control

Left deviation Right deviation

MAX
Prop W Prop W
speed
Dead B
Dead B A_min
10
Dead

Zone /\
roportional

Control Range

Figure 5.8 Proportional control

Proportional control, such as electric servo
mechanisms and proportional solenoid valves,
1s commonly used in the mechanical control of
industrial equipment.

There are two types of actuator drive: ON
-OFF control and proportional control. In ON -
OFF control, as shown in Figure 5.7, when
the deviation between the order and feedback

exceeds the deadband width, (D the actuator
turns 'ON'and moves at maximum speed in

the direction that reduces the deviation.
When the deviation amount enters the
deadband width, the actuator turns 'OFF".

When this ON-OFF operation is performed
with an electric actuator, for example, @ the

deviation enters the deadband and the motor
1s turned 'OFF', but the motor cannot stop

immediately, so the actuator runs for a while
and then stops.

If the deadband width is narrow, there is a
possibility that it will run beyond the

outside of the deadband on the other side, in
which case (D the actuator turns 'ON' again,
moves at maximum speed in the direction that
reduces the deviation, and when the
deviation amount enters the deadband width,
the actuator turns 'OFF".

If the dead band is set narrow with ON-OFF control, the above steps D and @ will be
repeated, resulting in a symptom known as hunting, and the actuator will go back and

forth and will not stop.

Since the dead band cannot be made very narrow with ON-OFF control, you cannot

expect very good stopping position accuracy.
With proportional control, the actuator decelerates in proportion to the deviation, as

shown in Figure 5.8, so "overrunning" does not occur much and the stopping position

accuracy 1s good.

5.2.3 Proportional Control

Proportional control performs mechanical control with an actuator speed

proportional to the deviation between order and feedback, as shown in Figure 5.8.

Proportional control speeds are divided into 1) the deadband range where the

actuator does not move, 2) the proportional control range where the deviation and

speed are proportional, and 3) the control range at maximum speed. 1) Deadband,

deadband Even when proportional control is performed, a minimum deadband is

necessary. Set a deadband that ensures a stable state without fine hunting.

77

If there is backlash or play in the mechanical parts or a time delay 1in the feedback
system, problems such as hunting that does not stop or unstable stopping position
accuracy will occur, so it is important to investigate the cause. Also, even if the
actuator startup speed is set from zero, there is a high possibility that the
actuator will not move because there is not much startup torque in reality.

It is necessary to set a minimum speed at startup, such as A_min in Figure 5.8. @
Proportional control range This is the region that accelerates and decelerates
from the minimum speed to the maximum speed with a certain deviation width,
and the purpose is to smoothly start and stop the actuator. If this region is
shortened, it will be equivalent to ON-OFF control, and if it is longer, the
actuator's tracking speed will be slower. 3 High- speed control range This is the
region where the actuator operates at high speed. The maximum speed value can
also be adjusted. The names of the proportional control functions are as follows:

TLCS—900
AUT_HDL()) Calculate the following direction (L_side ()
HND _HDL() and deviation and jump R _side()
L_side () Dead band of proportional control Dead_B, proportional control width Prop_ W
R_side() After setting the minimum speed A_min, set the timer PWM
ARM
Hensa_check()
AUT_HDL()) Calculate deviation and jump
HND_HDL()

/

Hensa_check () Calculate the tracking direction from the deviation, and when it is

‘l' greater than the dead band width L_turn()
R turn()

L_turn()) Motor rotation control

R_turn()

5.3 Pedal control

Pedal control (vehicle speed control) is performed by remote control to control
forward and reverse, and speed control by PWM. In addition , the vehicle speed is
measured by counting pulses from the rotary encoder built into the motor, but the
encoder value is not fed back like in steering wheel control, so it is an open loop.

78

5.8.1 Pedal Control Overview

As shown above in Figure 5.4 Remote Control Message, an 8-bit speed command is
sent from the remote control. The 8-bit value 0 to 255 is divided into three parts,

255 142 100 0 forward (Ahead) , stop, and reverse
I I I I (Asturn), and you can freely control
Moving Forward Stop Reverse forward and backward movement using
Figure 5.9 the accelerator knob on the remote

Speed command from remote controller control. The pedal is operated as follows:

The pedal order shown in

HND_PDL() < Manual Figure 5.9 is generated based Advance Order AHpedal ()
AUT PDL() o Automatic pasmonaf e fosetsaitiol, Backward Order ASpedal()

If the pedal order is forward , depending on the current situation, it will start forward,
stop to reverse, or maintain the current situation and only set the speed.

AHpedal () Motor stopped Yes —= Motor forward start

/

Motor reversing Yes —= Motor reversal preparation/stop

'

Motor moving forward Yes —= Speed setting update
When the pedal order is reverse, just like forward, you stop or maintain the current state to
start reverse or reverse depending on the current situation, and only set the speed.

ASpedal () Motor stopped Yes — Motor reverse start

{

Motor moving forward Yes — Motor reversal preparation/stop

V

Motor reversing Yes — Speed setting update

5.3.2 Pedal Speed settings
The square wave output of the CPU's built-in timer is connected to the PWM

terminal of the H-bridge driver that drives the pedal motor for PWM control.

The duty ratio of the timer

square wave output can be
% . .
varied as desired by a program,

as shown in Figure 5.10.
Duty50% Duty100%

However, even if the duty ratio
1s set to its maximum, for
example, in the case of an 8- bit
timer, the duty ratio will be up
to 254/255.

In the TLCS-900 version example program, when AHrning() detects a duty of

Figure 5.10 Timer square wave output waveform

254/255 or more during forward rotation only, the timer output is switched to the
boat output and '1' is output continuously , making it 255/255.

2¢The same process is carried out for steering wheel speed control.

79

5.3.3 Pedal motor speed measurement

The traveling speed of a bicycle is one of the essential elements in bicycle posture
control calculations. In this teaching material, the traveling speed is measured by
counting the number of output pulses from the rotary encoder built into the pedal
motor at regular intervals. For specifications of the pedal motor and rotary
encoder, refer to section 1.3 above. Pulse measurement is performed by counting
the number of pulses at 100 ms intervals in the interrupt function shown below,
and then storing the result in Pedl_encoder or Pedl_enc or (1040H) after scaling
the number of pulses x 15 to make it a convenient scale for posture control
calculations. The number of pulses after scaling is a value of approximately 450

to 1100. Pulse count interrupt function name
T LCS—900 — INTO0_Z()
ARM — INTO_IRQHandler()

5.4 Automatic Attitude Control

The automatic attitude control of the bicycle teaching material in Figure 5.11
operates the handlebars to return the bike to its original tilt, just like when we
normally ride a bike, and also operates the same handlebars to turn in the
desired direction. In this section, we will first explain the mechanism of attitude

control, and in the next section we will explain how to develop an attitude control
program.

B (®Handle/Drive motor
batt |
arery | . o @DAngle detection (rotary encoder)

\
\

(@Rotational velocity sensor

@Microcomputer

@Pedal/Drive motor

BRotary Encoder for Speed Detection @it Angular Rate Sensor

Figure 5.11 Automatic attitude control bicycle teaching material

80

Falling force
BRI =

54.1F ti bicycl
orees acting on a bieyele While a bicycle is being ridden, there

are various forces at work, such as the
_ tipping force Fp generated by the tilt of
Tilt angle Handle angle -
G N R the body, the centrifugal force Fr
Centrifugal force generated when the handlebars are
- BLT) Fr o turned and the body turns, and the
“ frontwheel 1nertial force F;that tries to keep the
§ gign body in place as only the front wheel
s moves toward the steering side when

the handlebars are turned.
In addition to these forces, there are

various other forces at work, such as
Rear wheel the force due to acceleration generated

- at the moment the handlebars are
turned, and the force due to lateral

acceleration generated by increasing
or decreasing the vehicle speed while

Figure 5.12 Forces acting on a bicycle the body is turning.

Here we will explain posture control using the major forces of inversion, centrifugal
force, and inertia.

As shown in Figure 5.12, the vehicle body inclination angle 6 generates a force Frthat
tries to tip the vehicle body over, as shown in Equation 5.1.

Falling force ~ F,-mgtan6 [(N] ---Equation 5.1

0 - - - Tilt angle m---Mass at center of gravity

Next, the turning radius r when the vehicle turns at a steering angle uis affected by
the wheelbase length and can be expressed by Equation 5.2.

. . K .
Turning radius 7=—2 [m]---Equation 5.2
Y7

M -+ -Handle angle K, ---Constants affected by wheelbase length

When the vehicle speed is ¥ [m/s], the centrifugal force F, is given by equation 5.3.

. & .
Centrifugal force F, =m (N]---Equation 5.3
r
Substituting Equation 5.2,
& 1 2)
F.=m—=—mV *u (N]---Equation 5.4
R T !
7

m - --Mass at center of gravity r ---Turning radius

The other element, inertia force, is a force that causes the front wheel position to
displace to the left in the right diagram of Figure 5.12 when turning due to the
steering wheel angle, and tends to keep the vehicle in place, as shown in Equation 5.5.

Inertial force F, = K,mV 1 [N] ---Equation 5.5
m - - - Center of gravity mass near the front wheels

If the vector result of the tipping force, centrifugal force, and inertial force is zero, as
in Equation 5.6, the bicycle will not fall over.

Overturning force - centrifugal force - inertial force = 0

1 .
mg tan@—?mlﬂ,u - K,mVu=0---Equation 5.6
1
The steering angle u can be derived from equation 5.6 as follows:

mg tan

I --+Equation 5.7
—mV*+K,mV
KI
Since K, * K, + m are fixed values once the vehicle body is completed, if we combine
them into a single constant K and consider only the dimensions, we get equation 5.8.

u=K tan 0 ---Equation 5.8
V,+V

In the control program used in this teaching material, the speed V derived from the

inertia force term is omitted, and since the angle of tan @ is also small, the calculation
is done at tan @ = @ using equation 5.9, and PID processing is performed.

U= K% ---Equation 5.9

The term for speed V? in equation 5.9 is very important, and the bicycle will not run
properly unless the amount of handlebar operation is adjusted in response to changes in
speed.

— Column 5.1 Reversing a bicycle

Two-wheeled vehicles are not good at reversing.

1 . . .
mgtan@——mV>yu—K,mVu=0---Equation 5.6 Vector of force acting when moving
K, forward

mg tan 6 —Lsz u+K,mV p=0---Equation 5.10 Force vector acting when reversing
i
When moving forward, the directions of the centrifugal
force and the inertial force are the same, but whe
moving backward, the front wheel position in the right
diagram of Figure 5.12 is displaced to the right. As
Square increase result, the force of inertia is opposite the centrifugal
force, as shown in Equation 5.10, and the two are
Proportional cancelled out, weakening the restoring force trying to
increase return the vehicle to its original position. Also, since the
velocity term of the centrifugal force increases squarel

Power

and the velocity term of the inertial force is V', there
. , . comes a moment when the two forces completel at V2
Figure 5.A: Squared increase and . . .
proportional increase cancel each other out, at which point the restoring force
becomes zero, and at the next moment the direction o
the restoring force reverses, making it extremel
difficult to steer when reversing.

Speed

5.4.2 Straightness correction

The bicycle can be operated without falling over by handling the handlebars
according to equation 5.8 or 5.9, which is derived from the previous equation: tipping
force - centrifugal force - inertia force = 0.

However, errors due to offset and drift of the inclination angular velocity sensor (D
in Figure 5.11), which measures the inclination angle, an element of posture control,
accumulate, making it difficult to ride in a straight line, especially for long periods
of time.

To improve this straight-line riding ability, a turning angular velocity sensor (2) is
used to correct the error of the inclination sensor (D).

Specifically, straight-line stability is improved by correcting the inclination angle in
equation 5.12 using correction value C, which is obtained by proportional and integral
processing of the output of the @ turning angular velocity sensor calculated in equation
5.11, and calculating the steering angle.

w Turning correction value C =Ko+ K4J-a)dt -+ +Equation 5.11

0 — wCorrection value
VZ

Handle angle u=K --+Equation 5.12

5.4.3 Control using a remote control

The direction of travel of an automatic attitude control bicycle can be controlled as
desired using a remote control.

@The value of the turning correction value C, which is obtained by proportional
integral processing of the output of the turning angular velocity sensor, is
intentionally changed using an external remote control, and false turning
information is given to equation 5.11, resulting in the bicycle turning.

When turning, the integral term of the turning correction value is cut. If this integral
cut is not performed, straight-line stability after turning will be impaired.

The timing of this integral cut and how the accumulated error contained in the
integral value is handled have a significant effect on the riding performance of the
bicycle, and are one of the techniques in programming automatic attitude control.

5.5 Attitude control program

The automatic attitude control program explained in Section 5.4 is deployed in
CALCU().

The output values of 0 to 1023 from the 10-bit A/D conversion, which is performed
once every 0.313 ms, are accumulated eight times, and data from 0 to 8184 is
prepared once approximately every 2.5 ms, then CALCU() is executed and the
following five calculation functions are called.

When explaining the contents of the functions, the input and output variable names
are listed in the order of the TLCS-900 C version, ARM C version, and TLCS-900
ASM

5.5.1 V2_SCAL()

The actual speed pulse value Pedl_encoder or Pedal_enc or (1040H) is squared and
scaled so that the output value is approximately 40 to 1000, then output to Speed_sq
or (1052H) and used by RUDDERQ to calculate the steering angle for autonomous

-83-

5.5.2 TRNrate()

Calculates the average and moving average of the turning value.

The turning value input Turn_val_tmp or Turn_P_buf or (104AH) is input once every
2.5 ms. This is accumulated 12 times to obtain polarized int data once every 30 ms,
which is then put into eight ring buffers to calculate the moving average.

The moving average output of the turning angular velocity Tangle_ave or (10A4H) is
output once every 30 ms and is used within TurnPID(to determine the limit of the
steering angle.

5.5.3 TurnPID()

To improve the straight-line stability of the bicycle, the lean angle error shown in
Equation 5.12 is corrected using the correction value Equation 5.11.

The output of the proportional term of the correction value is Turn_Val or
Turn_P_calc or (1046H).

The output of the integral term of the correction value is Turn_I_calc or (104EH).
When integration is used, the integration value limit and reset timing are difficult
elements.

In the current program, turning integration is stopped while turning.

The integration limit is set to a maximum limit of £1000000 bits within K_max().

To prevent the sensor drift value from accumulating, one bit is subtracted once every
2.5 ms.

Although we are taking the above measures, we believe that the current situation is
not optimal.

w Turning correction value C =Ko+ KJa)dt -+ +Equation 5.11

0 — wCorrection value
V2

Handle angle u=K -+ -Equation 5.12

To control the bicycle using a remote control, the value of K3 in Equation 5.11, the
turning compensation value, is intentionally changed by the handlebar angle on the
remote control.

When the bicycle is in automatic driving mode, a dead band of £200 bits is set around
the center of the handlebar angle on the remote control to distinguish between
turning and going straight.

Within £200 bits, the bicycle will go straight, and any handlebar angle greater than
this will cause the bicycle to jump to LtrnODR() or RtrnODR

() and enter turning mode, where the bicycle will start turning in the desired
direction.

If the turning compensation value is changed significantly all at once from the remote
control, the bicycle will fall over, so a limit is set so that the change value is no more
than 50 bits in LtrnLIM() or RtrnLIM() once every 0.5 seconds.

5.4.4 KsyaPID
In the above section 5.4.1, u= K% -+ -formula 5.9 is explained as PID processing,

but there is no specific program that performs PID calculations.

We will explain the actual state of PID processing of the lean angle of this bicycle.
As explained above in Section 2.1, the angular velocity sensor section, and Figure 2.3,
Sensor output waveform, the lean angle sensor of this bicycle has an output

-84-

waveform that is somewhere between that of an angular velocity sensor and an
angular acceleration sensor, so if we think of it as an inclination angle sensor, the
A/D converted output of the lean angle sensor, AD2_out_slope, AIN5_auto, or
(102CH), is close to the differential value D of the lean angle.

Also, since Equation 5.11 is the differential value of the actual amount of turning
resulting from the handlebar angle calculated from the differential value of the lean
angle, , it is a proportional action in terms of dimensions, and can be thought of as
an integral action.

When we first began developing this bicycle, we tried differentiating and integrating
the lean angle, and then integrating it twice, and we arrived at this conclusion
through trial and error.

KsyaPID(adds the above differential, proportional, and integral values, adjusts the
span, and passes it to RUDDER(as the correction value Slope_Val or (1048H), which
is the numerator term in equation 5.12.

5.5.5 RUDDER()

0 — wCorrection value
VZ

Handle angle u=K --+Equation 5.12

A calculation is performed and proportional control of the steering angle is performed
based on the deviation of (steering wheel angle - steering wheel feedback).

-85-

Chapter 6 Using the Debugging Function

You can use the debug function of the bicycle teaching material to record driving
data during automatic driving. Normally, you can check the memory etc. with the
debug tool connected, but you cannot continue to ride the bicycle with the tool
connected. Therefore, you can temporarily record the driving data while driving to
the memory, and then connect the tool after stopping the driving to view the
recorded driving data. We will introduce how to record driving data using the
sample program on the included CD.

6.1 Overview of how to record driving data
- Recording starts with the remote control UP button (LED: ON)
- Recording stops with the DOWN button on the remote control (LED: OFF)
* Recording interval: Approximately every 100 msec
* Recording capacity: Approximately 1 minute
» Recorded data (D: Steering wheel operation amount
* Recorded data @: Incline value during automatic operation

The remote control sends commands to start and stop recording to the bicycle while
it 1s in automatic operation. The red and green buttons on the remote control have
already been assigned functions, so use the buttons under the cover. To remove the
cover, remove the two screws at the top of the back side (Photo 6.1). Then, lift the
top cover on the front side and it can be easily removed. Of the four buttons under
the cover, the UP button starts recording and the DOWN button stops recording.
The UP and DOWN buttons are used for the dump function on the remote control
board, but do not affect the signals sent to the vehicle.

remove upP DOWN

Photo 6.1 UP/DOWN button switch

86

6.2.1 ARM version debugging procedurel.

Refer to the "Setup (ARM version)" manual on the included CD and follow the
steps up to "3.5 Writing and Debugging Executable Files." Leave the sample
program written to the vehicle. 2. Write the variables for recording. Open the file
"ramed.h" and add four variables by referring to image 6.1.

m,clhwc ramdef_h [mw_mm.s
28 I."lllttli!I!iI{ﬂ{F#t******#*}}}}}*x*x*!tt!lt#ii{ixix#x*i*k*}*l*lkl*t,"’
28/ MEIENOEE (RANEE ¢ 0x20000000~) 1/
30 Ssrarsrrrrrrrafrtri it Erei e s ss I e AR RRAR KRR RRER AR R Rty
31
32 =3 Hifdef RAM_DEFINE
33 f#def ine EXTERN
34 | fHelse
35 #def ine EXTERN extern
36 - Hendif
g?
a
39 EATERN unsigned char Rec_flag: HOEBHEEDS S
40 EATERN wnsigned shorl Loz _cnt; Fif: ﬁ%ﬁlﬁiiggﬂ s B
4] EXTERN short LOG_SLOPE[ENOT A EEHER
g IEE‘JEHH short LOG_HNDL_VAL[E00T; h" 1 F LB SR
44
45 EXTERN unsigned char Flick_time; /A SIRAER
46 EXTERN wnsigned char Flick_flag; Vi =
dz EXTERN wnsigned char Flick se; ‘

Image 6.1 Adding variables (ARM)

@ Write a program for recording.

Open the file "main.c" and write flag control in the DOWN command in the function
'RC_Sbit()' and in the UP command (Image 6.2). The DOWN command turns the flag
OFF, and the UP command turns the flag ON and the LED on the car body ON.

main.c | interrupt.c | ramdef.h
1026 7 T 7
} g%g PRS- 111 */
1028 AYELAF-MAE b Frohw/
1029 void RC_Shbit(void){
1030 ¢ if ((Rc_state & 0x01) != 0){ £/ STOPtEdnL)?
}gg%) RC_STP(); APy Ve MES
1033 © else if ((Rc_state & 0x02) '= 0){ i STAHHE‘%@"J?
}ggg) RC_STAT(): /f BENESTSTARTINIE
1036 g else if ((Rc_state & 0x04) '= 0){ // DOWNYE S dD L) 7
1087 ¢ { Rec_flag == 0){ nEﬁ??bUFF”
1038 return;
1033 1 8
1040 TSB_PK_DATA_PK1 = 13 /7 LED;EIT .
}gz;) Rec_flag = 03 // SR 3 SOFF
1043 g else if ((Rc_state & II 08) '= 0){ // UP{gsdnt)?
1044 ¢ if (Rec_flag == 1){ / sk = S0N?
1045 return;
1046 1
1047 TSB_PK_DATA_PK1 = 03 // LEDS 4T
1048 Rec_flag = 1; / SR 3 Z0N
1043 + 1
g)

Image 6.2 Flag control (ARM)

87

@ Write a call to the recording flag check function 'REC_CHECK()' in the
function "TIM10()' (Image 6.3). The function called in the function "TIM10()' is
executed every 10 msec.

-ﬁu:lntem.ptclrandefh

/ /
167 /w 10mseclh-F *4

!
169 void TIMI0{void){
170 Ti0ms_f lag &= 0xfb;

172 AUX_T(T 10ns, 4);
173 DaCodr(];
174 STATspd();

176 REC_CHECK ()3

/7 10nsh {79038
£f 10msB{7739° Yhab

i afmﬁa (1 10ms]‘3\b4n 1{
// DAZRYH
1 - H#o)ﬁr’mﬂ

HERISTFz v

100msec) — F ./ #38

Image 6.310ms call (ARM)

(® Write the functions REC_START()', REC_STOP()', and 'REC_CHECK()'
below the comments for the 10msec routine processing (Image 6.4).

main.c | interrupt.c | ramdef.h | startup_TMPM332.5

10msec)|— F 2/ 138

! /
39 ;{’* B &gz — 2 505k *;

42 SHEEREHIG
43 g void REC_START(void){

MEEFRD T T F o v o/

void REC_CHECK(void){

if(Rec_flag == 1){
REC_START():

else if(Rec_flag == 0){
REC_STOP(J:

44 if (T_1oms[1] '=0) A N 00msecE

32 return;

47 T_10ms[1] = /8 00msectz » |

48 LOG_SLOPE [Log cnt] = AINS auto: /i BEmEETPIEFHBEEN
49 LOG_HNDL_Y&L [Coz_cnt] = Hndl_val; £ FIVIREEERA
50 Log_cnt++; £f BRI AH

51 o if (Logz_cnt >= B00){ L nEe

52 TSB_PK_DATA_PK1 = /f LED;EIT

53 Rec_flag = 03 /! 528k 23 F0FF

gg Logz_cnt = 0 AR A50TF

56 -1

57 /HECFRBiEH/

58 void REC_STOP(void){ .

gg Rec_flag = 0; /! SEFk TS FOFF

61

Image 6.4 Recording control (ARM)

The function 'REC_START()' stores data every 100 msec.

AIN5_auto stored in the variable LOG_SLOPE[] is the slope value data during

autonomous driving.

Hndl_val stored in LOG_HNDLE_VAL[] is the steering wheel operation amount

data.

88

Data is stored approximately every 100 msec, up to 600 items, allowing one
minute of data to be recorded. If recording is stopped with the DOWN button
before one minute has elapsed, the data recorded up to the point at which it was
stopped will be retained, and when recording is resumed, data will be stored from
the point where it was stopped. After one minute has elapsed, the flag will
automatically be turned OFF and recording will stop. If recording is started again,
the oldest data will be overwritten.
©After writing the above program, rebuild everything and check that there are no
errors. If there are no errors, connect the vehicle and the debug tool, download and
debug.

(MCheck that the program is working properly on the debug screen. Display the
live watch and register the four variables you added this time (Image 6.5). Press
the UP button while the program is running to start recording. Use the handle
volume on the remote control to change the value to be stored. Press the + button
next to LOG_HNDLE_VAL[] to check the value. Press the DOWN button to stop
storage and confirm that the LED on the car body turns off. Also, confirm that
Log_cnt increases while recording and Rec_flag is 1.

34 T0AvF x
b2 E {uE Bl |
Rec_flag 0 0x20001C7C uns
Log_cnt 19 0x20001C44 uns

LOGSLOPE <array> 0x20000000 sho
{array> 0x20000E10 sho
=Y 0x20000E10 sho
=17 0x20000E12 sho
-16 0x20000E14 sho
=17 0x20000E18 sho
=A|F 0x20000E18 sho
=17 0x20000E14 sho
=% 0x20000E1C sho
-16 0x20000E1E sho
-16 0x20000E20 sho
=17 0x20000E22 sho
-16 0x20000E24 sho
=17 0x20000E28 sho
-144 0x20000E28 sho
-144 0x20000E24 sho
-144 0x20000E2C sho
-144 0x20000E2E sho
-144 0x20000E30 sho
-144 0x20000E32 sho
-144 0x20000E34 sho
0 0x20000E36 sho
0 0x20000E38 sho
0 0x20000E34 sho
0 0x20000E3C sho
0 0x20000E3E sho
0 0x20000E40 sho
0 0x20000E42 sho
0 0x20000E44 sho
n Nx2NNNNF 4R shn T

m »
AYF 1[943F 2 A TI39F | x

Image 6.5 Live Watch

8. Once you have confirmed that the program is working properly, prepare the
recorded data so that it can be easily handled. Select Break from the Debug
screen to pause the program.

Display Watch 1 and 2 from the Display tab, and register LOG_HNDLE_VAL to
Watch 1 and LOG_SLOPE to Watch 2 (Image 6.6) (Image 6.7).

89

i & ET)E
Awtz—2(G) Larray: 0x20000E10 shol !
| |t 0 0%20000E10 sho
= = a5 i 0x20000F12 sho
i il | | |2 A : 0 D%20000E14 &
Deb | e 5 K sho
A Pt * et 0 0%Z0000E1 4 e
Bl f BEesdup) ; 0 0x20000E1G sho
SEU(M) 0 0x20000E1E sho
s Bictimcumicimbomoammistiionn 0 D%20000E20 She
/i”l’ub)ﬁfu(‘t’) e e T e e e 0 0x20000E22 sho
LR i i 0x20000E24 sho _
27 Y F (W) r T wFIL) n - [PTs Vu{nlulutnie] - N . -I-r_
O—7L(L) D wF2A(2)
EZ(A) Tz wF3(3) x
=E:1(0)]) & g B~
SATIAwFN) o <array> 0%20000000 shal
Bg w7 wFQ) ! & 1=] 0x20000000 sho
S , Lalgy, oo oot 0 0,20000002 sho
| i 0x20000004 sho
R Pl 85 0 0x20000006 sho
A&y (T i | ——— i 0x20000008 sho
S-S0 %&T»?E??"&“U*‘E'”’-!"—w 0 Dxa0000004 sho
o | = sho
;;@:(GJ gm(sﬂﬂag & 0x01) 1= 0 0 0%2000000F T
0 0%20000010 sho
- AL S(E) ey 0 0%20000012 sha
5 = 0 0%2000001 4 b
S‘RT " Hoome flag & 0:012 1= 0 0 D;QDDDDD]B Ehg
=LY To0(7; 0 0x20000018 sho
e ’ 0 Dx30000016 pi
—_ .o, X, sNo v
NEW PROJEGT | Y| AT—FRI(S) - L = s ;
£ |
Figure 6.6 Watch display Image 6.7 Watch Registration

Once registration is complete, stop debugging, turn off the power, and remove the
tool. 9. Acquire data during automatic driving. Refer to the driving instruction
video and perform automatic driving. Pressing the UP button just before driving
will ensure reliable data recording. 10. After automatic driving has stopped, press
the DOWN button to stop recording. Please note that the recorded values will
be erased if the vehicle's power is turned off.

@ From the Project Options, select the Debugger Settings tab and uncheck Run to

specified location (Image 6.8).

g - -
J— R"NEW_PROJECT' DA o3> =

Hyk THErEEE
— AT -

BHREAT [
T LA
Cfe++T441 %
[aren BS540 M B TETR)
G g; i 9Py Ih0E

ok | [Tl =07 MOz

BE | Hyun—f [44—y | BATan | sesor | a4

i

1l

Angel

CMSIS DAP 74 252k A G

GDBH =4 [T 77 b bt =33 B

IRROMEZR | [$TOOLKIT_DIRS¥CONFIG¥debuszery Toshiba¥ TMF M332FWUG ddf

Iet/TTAGjet

Jink{1-Trace

TI Stellaris

Macraigor
__PEmicro = [ok 2T

Image 6.8 Debugging settings

90

Next, select the Download Debugger tab from the project options and check Attach

to program (Image 6.9). Checking the above allows you to debug without resetting
the target. After changing the options, rebuild everything.

= F"NEW_PROJECT DA T332 ===
e TH
— A *
BI6TRRAT
S8 LRI e

et = | Houn—F [43-0 [EmdFiay [7hFar [250

L cal [Eaiwinte YN iy
i "

b e ¥ A7 3500

AAALELIE L0 - L)

@I te v

IEeia0-H%EERTIW
T2 bboard 7y LT /51 MO - o
STOOLKIT_DIRF¥contie¥flashloader¥ Toshiba¥F lash TMPR:

e
| CMSIS DAP
GDEH -}
IAR ROMEZS
I-jet/ITAGIEL
JLink/1-Trace
i T1 Stellaris
Macraigor

PE micro = [ok [Febl |

Image 6.9 Debug setting 2

(2Connect the tool to the vehicle and perform debugging without downloading
(Image 6.10).
| X2
50— FETIEF/ (v |
E1%6.10 T/\vJHES

Right-click on the Watch 1 screen and select Save to file Image 6.11).

\EL VRS x
= ' firiy Bl -
= LOGHNDL... <array FIAAIbTA—w ~D)
i [0] 4 .
- [1] 14
- [2] 14
- [3] 14
- [4] 14
- [5] 14
- [8] 14
- 7] 14
- [A] 14
- [8] 14 »
i [10] 14
R - 1 ‘_"._|
4 | |
A2 x
2 & {iiE B -
= LOGSLOPE <arrayy 020000000 sha—
o] -74 20000000 sha
-E0 020000002 sho
-42 0320000004 sho
-8R (20000006 sha
-53 020000008 sho
-5 0x20000004 sho
-53 0x20000000 sho
-84 03%2000000E sho
-78 0x20000010 sho
=71 020000012 sho
-88 0320000014 sho
-34 0x20000018 sho
92 0x20000018 sho
-117 020000014 sho
-42 0x20000010 sho ~

T | ¢

Image 6.11 Log save 1

91

Similarly, save the Watch 2 screen.
You can save it anywhere you like (Image 6.12).
If you have not taken a record, please refer to 1.

2 77 LERF i « @ ety
(N » DEMO_LOG » - |4 | Demo_tocmwR &

HE - LAV P =+ @
s ST ' =wEn L A
B So>0-F | Debug 018/07/31 11:15 2
W FAY T settings
L BEETLRESS sore
B o By watchi.log
. ® watchz.log
il ST
= eoFe
- B

o S-Sl

| o B e e~

Br oy awy ==

:| TP AIEN): ﬂj‘!ﬂ"" B B =
=| FTrILOERT): | TEA T 2L (" log) Al
[

| (& THILT-OHES RE(5) Frzek |

= — =

Image 6.12 Log save 2

)The saved log file can be edited using Excel etc. The acquired driving data is
shown in Graph 6.1. This graph shows data every 100msec, but you can change
the program to every 10msec or add turning values, pedal speed, etc. to the
acquired data.

3000

2000

— I
— EHHE

-3000

Graph 6.1 Driving record (ARM))

If no record is taken, please check steps @ to @ again. If no record is taken
after checking, the vehicle board may have been reset. If you are using a J-TAG
tool compatible with J-LINK, the target may be reset when connected.

Press the UP button, then press the DOWN button, and the LED on the vehicle
will go off. If the LED goes on after connecting the debug tool with the LED off,
the vehicle board has been reset.

92

Please take the following measures:

« After connecting the debug tool to the PC, wait until it is recognized by the PC
before connecting it to the vehicle.

« If you are using a USB extension cable for your debugging tool, remove it.

- Replace the vehicle battery with a new one.
If the reset still occurs after trying the above, please use IAR's J-TAG tool I-JET or
similar.

6.2.2 How to output assembler files in the ARM version

This explains how to output assembler files with IAR Embedded Workbench for
Arm. Only the full version and the 30-day limited edition support outputting
assembler files with TAR Embedded Workbench for Arm, and it cannot be used
with the code capacity limited edition. If you have installed the code capacity
limited edition, please install the 30-day limited edition from the IAR website. In
this case, we have confirmed that it is possible to install the same IAR Embedded
Workbench for Arm if the version is different. Below we will explain how to output
assembly files with the ARM version.

Assembly file output settings

Open the relevant workspace and open the project options. Next, select the List
tab in the C/C++ Compiler item. When you open the relevant tab, the screen below
will be displayed. Currently, the "List file output" box is not checked so that the
assembly file is not output. If you want to output an assembly file, please set it as
shown below.

x|

s THumeEE |
—HRAF e et O 5 e) o A

EREIATAT [Sl Uy ks

202 LAk ZEF | MBRA-C2004 | MBERA-GA9 | Tua—k | Emdruas |

==z == Sy 3 ! -y

crope £551 | =% | ok | Bk | ®A AL | oty
WAL =4 ¥ YA FIP ILOHEAI0)

HARLEILE vV PELIST—EI0A)

STV I” Z2HRLD)

Uh (R T o IR

Fhioh I = =

Y31l-h |l F= R G R)

CADI

CMSIS DAP

GDEH =

Iqet{TTAGjet

Jink/I-Trace i

TI Stellaris

Nu-Link

PE micro

ST-LINK ot | 0K | =t |

Image 6.13: Project Options List Screen

Next, select the List tab for the Assembler item. When you open the tab, the
following screen will be displayed. Currently, the "List file output" box is
unchecked so that the assembly file is not output. To output the assembly file, see
Image 6.14 on the next page.

93

Check the box for the assembly file output setting, click OK, and then rebuild. If
there are no errors, the assembly file will be output to the List folder in the Debug
folder where the project is saved, as shown in Image 6.15 Assembly File Status.

|/-F"DEMO PROJECT"@A79a> |
ot TigmEEE |
— B3 4]
ERORRAT
Sl LERIR — e T —
i =32 | | uznts | setr | ishoAzoay |
7 2 1Y S e (o)
?ﬂiﬁf W AsHESTIH W O0AUTPLLAESE0)
s ¥ URMESEL) ¥ #define “
e W #inclide ENETHAMT) W PIER LAY
Fhivh ¥ TH0ESD) v orTRsER)
PERl] W THOMIEFCD i =ity [
CADI v TOOFEITRERD 0
SRR(E: [5 |
E::f:f;‘:’ 7 PHELISE0HE)
e - W TR
JinkfI-Trace Lo
TI Stellaris
Mu-Link
PE micro
ST-LINK. = oK I i)l

Image 6.14 Assembly file output settings

G:¥ARM¥ARM{IAR Embedded Workbench)¥DEMO PROJEGT¥Debue¥list =10 x
B =10l x|
Ql\'jq = DEMO PROJEGT + Debue ~ Lt | - &3 | Listotesk L2
PAF) REE) FT0) UoMT) AT
WE oy H{IFUCEM v BE v BEAS HLUTME- = @
—— it - E= |tz [#12]
B FAOkT || DEMO PROJEGT map 2018508414 10:22 MaF 274)1 2 KB
Debug =
y et | interrupt lst 2018409514 10:22 LST 27)k 3 KB
e]
'; fiijk il | mainlst 2018409514 10:22 LST 2741 326 KB
|| startup TMPM332 st 2018508414 10:22 LST 27)1 45 KB
i 2473 | system TMPM3321st 2018508414 10:22 LST 27k 26 KB
5 Basub
= EhFs
Bt
o 31-3vh
L W R B
B 05 (6) =
5 {EnEE
Image 6.15 Assembly file status
If you open the above file in a text editor such as Notepad, you can see the

program written in assembly language.

94

6.3 TL.CS-900 version debugging procedure
D Refer to the manual "Setup (TLCS Edition)" on the included CD and execute up
to "3.5 Writing the Executable File". Leave the sample program written to the

vehicle. @ Write the variables for recording. Open the file "ramed.h" and add eight
variables referring to image 6.16.

0x1000~13

fdef ine EXTERN

felse

: Hdef ine EXTERN extern

Hend i f

CEXTERN unsizned char Rec_flag;

(EXTERN unsigned int Log_cnt;

EXTERN unsigned char Result_hndl _flag;
(EXTERN unsigned char Result_slope_flag;
CEXTERN unsizned int Result_hndl _cnt ;
(EXTERN unsigned int Result _slope_cnt;
(EXTERN int LOG_HNDL_vaLTea0] s
(EXTERN int LOG_SLOPE[ROO];
(EXTERN unsigned char T1_25ms_flag;
tEXTERN unsigned char Shift_bit;

(@ Write a program for recording.
Open the file "C_JTN.c" and write flag control in the control functions RC_DN()
and RC_UPQ for the remote control's DOWN command and UP command (Image
6.17). The DOWN command turns the flag OFF and turns off the LED, and the
UP command turns the flag ON and turns on the car body's LED. Also, comment

out the integral

enable flag.

e e R N
e T

i
#,

:/x*x***********x*x*xxxxxxxxxxxxxx******xxxx********x*x*xx*******x/
: e

i SHEREERIDEE (RANSEE : 5/
s e T T T T T T e
Hifdef RAM_DEFINE

SirEEFEILE DS S
scaROEIh 7R y
I T e
tEfER IR T 2o J
Do FlbstER T O A
tERHER iR D B
112 B LB
tEFHEE

1.28ms 774"

BRITEPH Aty

1993

1594:/
1595:

1596:
1587

@ Write a call to the recording flag check function REC_CHECK()' in the function "TIM10()'.

/x3E DB RESET*/
void RC_DN(void){

J/8D _flag &= Dxfb;
if(Rec_flag == 0){
return;
I0P3 |= 0x02;
: Rec_flag = 0;
i}
AENE SETx/
v0|d RC UP(vmd){
/70D flag |= 0x04;
if(Rec_flag == 1){
return;

I0P3 &= Oxfd;
Rec_flag = 1;

/¢ DOWNIE S
7 EAARY

'/ LED;ELT
S5k 05> HEL

" UP{E IR
BRAEMZY b

'/ LEDSAT

Image 6.17 Flag control (900)

95

(Image 6.18). The function called within the function "TIM10()' will be executed every 10 ms.

185:
186: /%1 0ngec 4 « 7ALIEs/
187:vaid TIMIO(waid){

188: T1Oms_flag &= Oxfh;

AUK_TCT _10ms, 47;

D&Codr () ;
BTATspd();
REC_CHECK() ;

1891}
o0 :

1 0me 7238
10ns843778° Uyl

i
A
ﬁ S{TEE (T_10nsinad)
i

£
A DAGHE h g
A4 25-tEF D E R

A4 ELER TS JHEER
A

201 Ao ek o oo O R o kS

207: /% 100ms {7 TR

£/

QDS:f**f

Image 6.18 10ms call (900)

(B Write the functions 'REC_START()', 'REC_STOP()', and 'REC_CHECK()' below
the comment for the 10msec timer processing (Image 6.19).

B L R R R R R R R R R R R R R R KRR R

g4:/¢ 10msh{ 7R

£f

85:/X*XXX*XXXXXXXXXX*XXX*XXX*XXX*XXX*XXX*XXX*XXX*XXX*XXXXXXXXXX*XXX*f

86 :
87 /x50 RRANE S
B8:void REC_START (woid){

g4 if (T_10ms(2] !'= 0}
an0: return;
q1:

!
9z: T_10ms[2] = 10;
93: LOG_SLOPE[Log cnt]
94: LOG_HNDL _YAL[Loz_cnt]
945 Log_cnt++;

96: if{ Log_cnt »= BOO)
a7: I0P3 [= Ox02;

a9 : Rec_flag = 0;

q9: Log ent = 0;

100

1

i1
102: #508kF b/
103:void REC_STOP (void){
2 Rec_flag = 0;

i1
AERER T S U F o O/
svoid REC_CHECK (woi
: ifi Rec_f
RE

5

B

1 H
B C
5 C
0n: 1

i

2

3

4

5

B

if{ Rec_flag == 0 }{
REC_BTOP();

H
E!f‘x[)i\@?ﬁﬁ;‘] fB3E/

AD2_out _slope;
Hangle_huf;

A E1 00nsecE

T T T T e e,
T e e e e

A BLER T 5 SOFF

Image 6.19 Recording control (900)

The function 'REC_START()' stores data every 100 msec. AD2_out_slope stored in
the variable LOG_SLOPE[] is the slope value data during automatic driving.
Hangle_buf stored in LOG_HNDLE_VALI | is the handlebar operation amount
data. Data is stored approximately every 100 msec, up to 600 items, so data can be
recorded for one minute. If recording is stopped with the DOWN button switch
before one minute has elapsed, the data recorded up to the point at which it was
stopped will be retained, and when recording is resumed, data will be stored from
the continuation. After one minute has elapsed, the flag will automatically be

turned OFF and recording will stop. If recording is started again, the oldest data

will be overwritten.

96

(©®Describe the conditions for displaying the DNSW UP SW

data recording results. Press the UP button on
the vehicle body board to display the
handlebar recording value, and press the DN
button on the vehicle body board to display the
tilt recording value (Photo 6.2).

Modify the sample program's dump function to
include a flag for recording data (Image 6.20).

Comment out the DUMPO call and the
M_POINT change from the sample program.

Also, pressing the same button while each
result is being displayed will stop the display -

of the records. Photo 6.2 Body UP- DN button SW

PR s E e s E e S PP PR F T S E R T L PR S S PR TS S TS S SS FE L S 2 3

231: /% 100ms9{7UL1E %/
P T e L L L et L et e Rt et e T P P P R P T e P TR e

233 /4P BT/

234:void DUMP_UP(void){ A wghnaE s

235: //DUNFL); A E N 2 B

%gg SON_POINT 4= Dx20; AR R RRETH L ME
938: if{ Rec_flag '= 0) Jf EigEt 7

234: return;

240+

2411 if{ Result_hnd|_flag == 0){ : :
%ﬂ%: Result_hnd| _flag = 1: AN FILERER DS SN
244: elsef - .
gjg: ; Result_hnd| _flag = 0; e FILRERET 7S J0FF
247

i
2481 /DN AR T+

249:void DUMP DNivoid){ AR RERTT

250 AFOUMPL) b b | S
%g; SAM_POINT -= Dx20;: SRR ARREY LR RE
253: ifi Rec_flag '=0){ SfsiERp T

2a4: return;

206 i

256 if({ Result slope flag == 0){ _ ;
gg; } Result_slope_flag = 1; fOERHERERT 7S SN
259 else] -

%g? | Result_slope_flag = 0; A ERHER R T 25 JOFF
e} i

wal

2E4: TN 0TRTRD HRlxS B

265:vaid DBG_TOL(vald){ AT -l R

Image 6.20 Result display control

(@ Write a call to the recording flag check function 'RESULT_DISP()' in the

function '"TIM 100()' (Image 6.21). The function called in the function "TIM100()'
is executed every 100 msec.

97

4641 1 Dlnsecd ALz

4B5:vaid TIMIOO(va d)] /7 | Dinsh{ 7 IE

jgag T100ns_flag 4= Oxfe; £ 100nsR T byl
4585 AUY_T(T_100ns, 4); A OSTEE (T_100nstn S 40° A
489: A

470: i

471: b

ﬁ% DBG_TOLE); £ F -l 3R

ﬂgg FLIGK(); £ T Pk

ﬁ%? 4 Reset ()3 // THngs sk

ﬁg Dh_flag |= Dx02; // DACZRERENE HIES bulb
jg?f RESULT_DISP(}; /) SRR

ﬁggil} Fid
484;/**********************f***f
485 -t b A E stEmIE .74

ARR D A R R R R R R R R R R R kR ke

Image 6.21 100msec call

Write the functions ' RESULT_SLOPE()', ' RESULT_HNDL()', and
'RESULT_DISP()' below the comment for the 100msec timer processing (Image 6.
22). The function "RESULT_DISP()' judges the flags set by the UP and DN buttons

on the vehicle board every 100msec. At each call destination, the address of the
array is stored in M_POINT. The function 'DUMP()' immediately afterwards
displays the stored results on the screen. After the results have been displayed 600
times, the flag is cleared and the display of the results is stopped.

230 EESEFEESES S TSI EIESEE LSS ST EE SIS TS SE S
231 ,.;* 100ms 574038 *§

233 AfEFHBS R R e/
234:void RESULT_SLOPE (waid){
735: if{ Result_slope_flag == 0 }{

%gg return;

236 M_POINT = &LOG_SLOPE[Result_slope_cnt]; A S T DEEFMEREMNEICE v
2581 DOMP () A H TR

240: Result _slope_cnt++; A4 MERIEEAIE D D R

2411 if{ Result_sTope_cnt »= BOO) /4 BON{EIF e H

249 Result_slope_cnt = 0; A EREmEL R T

%ﬁ) Result_slope_flaz = 0; A EREMERER IS FoUT
245:}

24B: /%00 HH%{"EI’E iR AT

247 tvoid RESULT_HNDL (void){

2481 if{ Result_hnd|_flag == 0){

Szﬁlg) return;

251 M_POINT = &LOG_HNDL_VAL[Result_hndl_cntl; // A 0 JQEEF 0 FILIEHEIZE o b
2521 DOMP () 5 A TRER

253: Result _hndl _cnt++; A FILAERIED T A4

254: Pf{ ReSult_hndl_cnt >= BOD){ /4 BO0EE TR A

7551 Result_hndl cnt = 0; N EIsHEL 2 222)T
%gg) Result_hndl_flag = 0; A PILEHREREER SIS OUT
258:

60:vald RESLL DISP(id - .
261 if{ Result hndl flag==1 1{ fEn e PSR ERTR DS S0
Sgg " RESULT_HNDLT) ; Ao FILE IR R

9Ra: elee if(Result _slope_flag == 1 11 A EFHERMmERET 75 0N
Sgg , RESULT_SLOPE(); /7 tEEHER MR R

D7}

268

26 5UPHR AR T +/ h

270:vaid DOMP UP(void){ A tEhnRma

Image 6.22 Result display control
@After writing the above program, run the build and check that there are no

errors. A warning message may appear, but this will not affect the operation
(Image 6. 23).

- 98 -

Lebx

C:¥JITENSYA_DEMO¥ IDEY [DE_C¥source¥C_JTN.c 238: THC1-Warning-590: Illezal pointer aperation =", twpe mismatch
C:¥JITENSYA_DEMOY¥ 1DE¥ IDE_C¥source¥C_JTH.c 251: THC1-Warning-550: Illegal pointer operation "=, twpe mismatch
[-008-1300: source¥sTARTZ{F. c

[-008-1600:1) 20, ..

[-008-1700: 38— koA,

1-008-1100: IDE_C.abs - T5— 0, 2% 2

A e F AT T 3 B8R) D7 ISR] - K]

L7 lcap [NUM gopy [[F (11 525 B2 |
Image 6.23 Build result

If there are no errors, connect the vehicle to the debug tool, start FD23Boot.

exe, and write the program. Use FD23Boot as is to check that it is working

properly. After resetting the vehicle, press the UP button on the vehicle's board

to display the recording results. Since no command to start recording was issued

from the remote control, the displayed resultis "00" in hexadecimal (Image 6 .

24).

In this case, the displayed results are read as follows: the first "100C" is the
variable address (the address may not be "100C"; see @).

The first "00" after that is the storage result of the first address "100C", followed
by "100D", "100E", and so on. Also, the variable LOG_HNDLE_VALJ] displayed
here 1is of type int, so it is expressed in 2 bytes. Therefore, it is read as the
concatenated value of "100D" and "100C". 32 bytes are displayed per line, but to
take into account the work of creating a graph, the next line is displayed starting
from the address 2 bytes away.

274Nl
X . L
O-4-70554
IC:¥JITENSVA_DEMO?LOADERWZﬁram.hQU =82 I FEXLH I
A=SFv F7O55 4 SUM{EFz+2

IC:¥JITENSVA_DEMO¥IDE¥IDE_C¥debug¥IDE_C.h5 =82

0000100C 0000 0000 0000 0000 0OOO QOO0 0OOO QOO0 0000 0000 0000 0OOO 0OOO 0OOO 0OOO OO0
F7ELR C D EF

Image 6.24 How to read the results

@Check the starting address of the variable LOG_HNDLE_VALJ]. Open the
map

file "IDE_C.map" output by the compiler. If you are using an IDE environment,
the map file is located in the debug folder in the project folder (Image 6.25).
Search for LOG_HNDLE_VAL in the map file and check the address. In Image
6.26, you can see that the address is "100C". Also, the starting address of

LOG_SLOPE is "14BC". Press the DN button switch on the vehicle board to
check that debugging starts from "14BC".

99

SATSUHoEN - HE - ETAG LI A A —

EAD g ¥
2-0—F = ©_ITN.asm
AT L€ ITN.rel
EETLER || IDE_C.abs

\® IDE _C.h20

jﬁu | = El AR -...ESI"T‘I
Faxzh | [sTaRT27Rrel
E%6.25 vvTI7AIL
=) (@ |loe_hndl AL R
453: _I0P3 19 i0_IOP9 START27F_c
454: _KET_DEC FEO3B7? f_code
455: _KET_INC FED3D3 f_code
456: _KET_RST FEO3F2 f_code
457: _K_max FEO?3F f_code
jgg _KsyaPID " FED86E f_codel
460: £ B'S_r area
461 : “LVahRUN FEUACD T_code
462: _L_Rchg FEOSEC f_code
463: L. side FEDB1A f_code
464: _L_start FEDSE4 f_code
465: L_turn FEOSEF f_code
466 : _Log_cnt 1002 f_area
€11 puijng FEDAS fToode

Image 6.26 Address verification

@ Once you have confirmed that the displayed addresses and variables are
correct, reset the vehicle and check that the values have been stored. Press
the UP button on the remote control to start recording, and operate the
handlebar volume for a
while. After a certain period of time, press the DOWN button on the remote
control to stop recording. At this time, make sure that the LED lamp goes out.
Press the UP button on the vehicle to display the recording results and confirm

that the value has changed (Image 6.27).

()Edit the data to confirm the displayed values as numbers. This time, we are us-
ing

Microsoft Excel 2010. Select the recorded value from the top and copy it (Image 6
.28). Open Excel and paste the copied value. Select Delimiter from the Data tab to
launch the Delimiter Wizard. Set it to separate by space (Image 6.29). Select Next,
and in the Select Data Format for the Separated Column, select the first two in
the

data preview and set it to text format. Select Finish to check the data (Image 6
.30).

Erase the data after separation, leaving only the address cell column and the first
data cell column.

- 100 -

FZ FD23Boot - =)

274N I7 AN
i 1
O-4-7J0554 O-4-70554 L
C:¥JTTENSYA_DENOVLOADER¥f28ran .h20 L BEDH [C:¥JTTENSYA_DENOVLOADER¥f 28ran.h20 3 BEAH
A=y FIOIS N SUNfEF7) A=yt IAYSH SUM{BFxo)
[C:¥JTTENSYA_DENO¥IDE¥IDE_C¥debug¥1DE_C-h: R el [C:¥JTTENSYA_DENOVIDE¥IDE_C¥debug¥IDE_G-ht #8
Wi 18/09/05 13:51:35 14761 Byte A 18/00/05 13:51:35 14761 Byte

0000100C 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500
0E 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500

500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500
500 ﬂ.’)ﬂﬂ 0500 0500 0500 0500 0500 0500 ﬂﬁOﬂ 0500 0500 0500 0500 0500 0500 0500
500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500

Mo =5 om.
5225295
S8
%
35
S8
=
=
S
=
=
S
=
8
=
S
=
=
S
=
2
S
=
22
i >

|| /00001020 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 76FD 8A02 WomO(T)

0001022 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 76FD 8A02 76FD ap—(c)
|| 00001024 0500 0500 0500 nﬁﬂﬂ 0500 0500 0500 0500 0500 0500 0500 0500 76FD 8A02 76FD 0802
|| 100001026 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 76FD BAO2 76FD 0602 8A02 BOHRIP)
|| [00001028 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 76FD 8AD2 76FD 0802 8A02 CADD BIEBO)
|| j0000102A 0500 0500 0500 0500 0500 0500 0500 0500 0500 76FD 8A02 76FD 0602 8A02 CAOD 8A02 (0)
000102C 0500 0500 0500 0500 0500 0500 0500 0500 7SFD BA02 76FD 0602 BAO2 CADD BA 02 T6FD
000102E 0500 0500 0500 0500 0500 0500 0500 76FD BAO2 7BFD 002 8AD2 CAOD 8AD2 76FD 76FD TRTER(A)
0001030 0500 0500 0500 0500 0500 0500 76FD 8A02 7EFD 0802 8A02 CAOQ 8AO2 76FD 76FD 76FD
0001032 0500 0500 0500 0500 0500 76FD 8A02 76FD 0602 8A02 CAOD 8A02 76FD 76FD 76FD 76FD BNSECEOR)

00001034 0500 0500 0500 0500 76FD 8AD2 76FD 0802 BAD2 c.:nu 8A02 76FD 76FD 76FD 7sr3 sgg

0001036 0500 0500 0500 76FD BAD2 76FD 0602 8AD2 CAD 6FD 78FD 76FD 76FD 5000 F Unicode SIIXFOTR(S) -

0001035 0500 0500 76FD 6AU2 76F0D 0502 8A02 CADQ 8402 7GFD 76FD 76FD 76D 5000 FeFD 840 e

0001034 0500 76FD BAD2 76FD 0802 BAD2 CAOD BAD: 76FD 76FD 76FD 5000 FCFD BAD 8AD2 Unicode SHIFORA() it
|| [0000103C 76FD 8AD2 76FD 0602 8AD2 CADD 8AD2 76FD T4 T0ED 16FD 000 FCED DAGD aA03 BAGD

000103E BAD2 76FD 0602 BADZ CAOD 8AD2 76FD 76FD 7GFD 7GFD 5000 FCFD BAD2 8AD2 BAD2 76FD 0000 0000 00C IME ZBI<(0) L4

0001040 76FD 0802 BAD2 CAOD 8A0Z 76FD 76FD 76FD T6FD 5000 FOFD 8AD2 BAOZ BADZ 76FO T6FD - B @
| 297 —Ts

Image 6.27 Checking the recorded contents Image 6.28 Copy of recorded values

Z| WAER | I5—

J Y/ 2
B WAERETOS—
A2 hL J« | 0000100C 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 05

A B | zuoumszoss-r-1/3 0 F

50001 000 bs00 0s00] | ERUET —MIEEEDT -ATHEENTLET.

100001 00E b500 0500] | DAA] £2Ub3aM, EHIBF -SORNEEELTHE .
00001010 p500 0500 | 7EOF -5

00001012 D500 0500] | 750774 MERERRLTEE «

00001014 P500 0500 .

00001016 P500 0500
00001018 P500 0500

(|
i
|
I
0000101 E PS00 0500]| sgpymt 5= e .
00001 020 Psoo osoof| HRUET H07VE I
|
!
U
U
U
U

00001022 P500 0500/ [z pooatooc 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500] ~
00001024 500 0500/ |3 PO00100E 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 |
00001026 D500 0500 [4P0001010 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500
5
<

00001028 D500 05001 | P0001012 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500 0500]

00001024 psoo oso00f| ¢! ") '
00001 02¢ 500 0500 = e o

00001 02E P500 0500} st) [Fe | (Gaw) [=70
00001030 p500 0500 FOr oDz TRUZ GAUT D RUZ TOF O DT
B 0 0500 o T T

InAnnd Ana RcAn ATAA ATAA ATAA TR A AR TEFR AZAA A AAA A AR A AAA TEFA TEFA T2FR 7200 CAAA

Image 6.29 Paste Excel

ROOGEEEIH—LK-3/3 0 (Bl

E B0 0T - SRR ERUTHED,
F'JOJ'; —&ﬁ‘i‘i

[O/R) HER DL, LB, BHUEHEROE
Rk e) :

[. |

FTHRE: $A82
Ea1—(P)

Image 6.30 Delimiter setting

- 101 -

As shown in image 6.31, convert the recorded data in column B to a signed decimal

number.
First, swap the two bytes before and after the recorded data. Convert the swapped re-

sult from hexadecimal to decimal and display the result in column C. The data con-
verted to decimal is of signed int type, so if the value exceeds 3 2767, the maximum
value on the positive side, subtract 65536 to convert it to

a signed decimal number. The converted result is in column D.

- Input formula for cell C3: =HEX2DEC(RIGHT(B3,2)&LEFT(B3,2))

- Input formula for cell D3: =IF(C3>=32767,C3-65536,C3)

You can confirm that column D is a signed decimal number from the address

value "103C".
LOG_SLOPE is also of signed int type, so you can handle it in the same way.

After confirming the operation, turn off the power to the vehicle and remove
the debug tool.

03 v fe | =HEX2DEC(RIGHT(B3,2)2L EFT(E3 2))

[& [=& [T w [= [w [|
1 | PFLAE EHET—4 2sR2 -65535 <

2

3 000 ooc 0500
4 00001 00E 0500
5 Doootola 0500
:00001 o2 E:J5oo
oooot4 o500
;00001 016 E:JSOO
5 booo1ote 0500
10 00001014 0500
11 oooo1o1c ‘0500
12 0000101 E E:)5oo
13 h0001 020 0500
14 h0001 022 0500
15 0001024 0500
16 @0001 026 23500
17 hoootozs 0500
18 00001024 0500
19 0000102C 0500
20 00001 02E 0500
21 boomozo D500
90 :00001 032 Z:J5oo
23 hooo1034 ‘0500
24 ;00001 036 E:JSOO
25 00001038 0500

i R R

wonon onoAan.oonono O e AN Ol O cnoCnocn onenooncn o on.onoen

]

26 00001034 0500 5
27 [0000103C 76FD 4006 -850
28 0000108 BAQZ 650 650
25 OO 040 7EFD 64886 -850
30 m000i 04z oaoe 518 18
31 D00 044 A2 650 650
52 0001046 CAOD 202 202
33 000 048 BAC2 650 650

34 00001044 76FD 645396 ~650 ; =
4 x| Shest! “oheets fSbeetd (oheets ‘ateetd ohectl JBheet? | Steetil

E=aE=0

Image 6.31 Data conversion

- 102 -

Acquire data during automatic driving. Refer to the driving instruction video
and perform automatic driving. Press the remote control UP button switch just
before driving to ensure reliable data recording.

(DAfter automatic operation has stopped, press the DOWN button on the remote
control to stop recording. Please note that if you turn off the power to the vehicle,
the recorded values will be erased.

(®Connect the debug tool to the vehicle and start FD23Boot. Press the UP button
on the vehicle board to display the recorded data in LOG_HNDLE_VAL. Refer to
@ to prepare a signed decimal number. Once the handlebar value has been
converted, clear the display on FD23Boot. Press the DN button on the vehicle

board to display the recorded data in LOG_SLOPE, and convert it to signed
decimal data in the sameway.

@You can create a graph using the prepared signed decimal data (Graph 6.2).
This graph shows data for approximately 100msec intervals, but you can
change the program to change it to every 10msec, or add turning values, pedal
speed, etc. to the data you obtain.

£ ;@ 855263 (900)

- LA LA . n
1ooo — e FIE
N Ay e

- AU AR I
= i L

-3000

Graph 6.2 Driving record (900)

- 103 -

Chapter 7 Bicycle body manufacturing
In commercializing this automatic attitude control bicycle, we made many
prototypes.

We have summarized the problems and information we learned in the
process.

We hope this will be helpful when you build your own bicycle. Photos 7.2, 7.3,
and 7.4 are some of the prototypes.

Photo 7.1

The commercialized bicycle, the prototype, and each part. In the lower right corner,
you can see various geared motors with different reduction ratios.

Photo 7.2 Photo 7.4

- 104 -

7.1 What is an automatic attitude control bicycle?
(1) Hardware

Wheel diameter 70mm

Wheelbase 115mm = Approximately 1/10 of the actual size
Ground height 160mm

(2) Control

CPU used: TMP91FW27UG (Toshiba)
: TMPM332FWUG (Toshiba)

Input signal: 1 Angular velocity sensor Tilt signal, rotation signal
2 Encoder signals Steering wheel angle, pedal speed

External input signal (infrared remote control): direction, speed, start trigger
Control output: Steering wheel operation motor drive, pedal drive motor drive

(3) Control method
How does it feel and move? There are three ways to maintain balance without

falling over. The first is to move the fulcrum. The fulcrum must always be under
the center of gravity. The second is to move the center of gravity itself. In fact,
anyone can wiggle their body while the bicycle is stopped and not fall over for a
while. The human being itself is measuring the movement of the center of gravity.
The third is to move both the center of gravity and the fulcrum. This time, we did
not use a gyro or centrifugal force effect, but only controlled the movement of the

fulcrum.

7.2 Center of gravity and fulcrum

No matter what shape an object has, there is always a point called the center
of gravity. If it is solid, the center of gravity isin a fixed position, and if it
moves like a human, it has a fixed center of gravity at every moment of its
pose. If you connect that point with a string and hang the object from it, it
will be stable without any lopsided movement. It will continue to maintain
the same state. This is called a statically stable state. Now, if you hang a
weight on the string, the string will point vertically. Usually, the center of
gravity isinside the object, so it is not possible to actually connect a string to
that point, but if you bring the fulcrum to the line that points vertically, the

object will be stable.
As shown in Figure 7.1, you may have seen a video of a

riverbank where stones are precariously stacked one by one to
balance, but in this case the vertical line of the center of gravity
of the top stone passes through the tangent point with the
second stone, and the vertical line of the center of gravity of the

first and second stones together passes through the tangent Fi gﬁr 071
point with the third stone . (The tangent point is the fulcrum.)
Furthermore, the center of gravity of the human body when standing with both
arms down is located almost behind the navel, and if the point where the vertical
line of the center of gravity meets the ground is within the area where both feet
touch the ground, the body will be stable without wobbling, but if it is outside this
area , the body will lose balance and fall (Figure 7.2).

- 105 -

In other words, when you lift your right foot to step forward, your center of gravity
is in front of your body, and if you continue like this you will fall forward. However,
you can stabilize yourself by finding a fulcrum below that vertical line. Specifically,
you can achieve stability by landing on your right foot and making sure that a
vertical line intersects with the line connecting the two points where your right and
left feet touch the ground. By always keeping the fulcrum below your moving
center of gravity, you can maintain your balance.

«<— Center of Gravity

\/\ s
. Center of Gravity m
V)
b
/ y; Center of Gravity
(

—

Figure 7.2

(1) In the case of bicycles

What does it mean for a bicycle to fall over? It means that the center of gravity of
the combined object of the human and the bicycle moves away from the line
(fulerum) connecting the two points where the front and rear wheels touch the
ground, causing the bicycle to lose balance.

Combined center of gravity

Center of gravity mark — @ \/

fulcrum

Front Front Front

S /

S

— @

The center of gravity is off
the fulcrum line

Figure 7.3

- 106 -

To keep a bicycle from falling over, you only need to consider left -right balance,
not front-to-back balance like with a unicycle. (Figure 7.4, left) If the bicycle leans
to the left or right, balance can be maintained by constantly keeping the fulcrum
under the bicycle's shifting center of gravity. With a bicycle, the fulcrum is not a
single point, but a support line connecting the two wheels. (Figure 7.3, center)

(2) Moving the fulcrum

So how do we move the fulcrum (support line)? First, when the tilt sensor detects
the direction (right or left) and the degree of tilt, it quickly turns the handlebars
in the direction of the tilt. Of course, just turning the handlebars is not enough;
you can move the support line by stepping on the pedals and moving the bicycle
forward. And it has to get closer to the support line faster than the speed of the
tilt (the speed at which the center of gravity moves away from the support line).
In the same way, the support line will move quickly to balance out the next
change in tilt.

Now, let's do an experiment. Using items you have in your kitchen, make the following:

o Cooking chopsticks

Try balancing it on the palm of your hand.
1/4 { <+<— Potatoes or tangerines

I think it's possible to do it somehow, but it will be easier if you invert it like A.
This is because it will be easier to adjust the fulcrum to the movement of the
center of gravity than if the potato was on the bottom.

o5 >

Weight Only left and right balance

Balancing on the pal Bicycles are support lines

The unicycle is of your hand L

the fulecrum C/wum

N

<> Center of Gravity

Figure 7.4

By the way, there is a toy called a balancing toy (Figure 7.4, right), whose center of
gravity is outside the body and whose fulcrum is above the center of gravity when
in normal use. Therefore, even if an external force is applied to it, it will not fall
over, but will sway back and forth and converge.

- 107 -

There is a celebrity named
Ayame Goriki, and there is also
someone with the same name
and profession.

In the past, the job of these strong
men (also called "powerful") was
to carry the daily necessities of
ascetic monks while running
through the mountains and fields
together with them. Nowadays,
they carry supplies to mountain
huts and act as guides on

Figure 7.5 mountain climbs, carrying heavy

equipment carried by climbers.
The amount of luggage they carry at one time is usually several dozen kilograms.
Sometimes it can be just under 100 kilograms. And the way they carry it is by
stacking the boxes high on their backs so that most of the luggage is above their
heads. (This places their center of gravity farther away from the ground.) This
high center of gravity makes it easier to move sideways.
If we were to carry the same weight of luggage, distributed across our waists,
sideways movement (walking) would be heavy and difficult, even if the weight of
each foot on the ground was the same . This is a kind of human wisdom; one
example of this is the ancient practice of carrying a heavy pot of water on one's
head (Figure 7.5).

7.3 Scale Ratio and Precision
The scale of an agile bicycle is 1/10 of the real thing. If the tolerance of a certain

mechanism on a real bicycle is 3mm, the tolerance of an agile bicycle is 0.3mm.
Unless the absolute value is within 0.3 mm, precision is not achieved. Errors and play
that are no problem in the 1:1 world are not acceptable in the 1/10 world.

In fact, we had a hard time controlling the handling of the bicycle. If the geared motor
used here has any backlash or play, it will respond slowly and will tip over. We tried
various gear ratios and types, and finally decided on one with an output shaft radial
backlash of 0.07 mm or less (Figure 7.6) (By the way, the backlash of a pedal-driven
geared motor is 0.5 mm.) This is a precision type that uses a coreless motor and

responds quickly to reversible rotation signals. (It is the most expensive of the parts

used, so it's a bit of a shame to use it.) Geared motor
utput shaft radial

«7 > — play (0.07mm or less)

Figure 7.6 Output shaft thrust play

7.4 Rigidity and weight reduction

It is said that the lighter something is, the better it performs when it floats in the air
(airplanes) or runs on the ground (cars). In the case of bicycles, they need to be light
to improve maneuverability and to respond quickly to the movement of the support
lines. On the other hand, the front wheel arm support (using two bearings) and the
handle drive geared motor transmit power via spur gears.

- 108 -

If the frame that holds them in place is soft and easily twisted, torque will not be

transmitted 100%.The force of transmission will be lost and reaction time will be
delayed. This part requires strength rather than lightness.

Furthermore, this mechanism requires high precision in terms of gear fits, etc.

7.5 Components

(1) Batteries: Four AAA batteries make the bike's heaviest part. The center of
gravity is raised by placing it in the same position as the heaviest person on a real
bicycle As in the example in the previous section, heavy objects are elevated to
make lateral movement easier.

(2)Handle drive geared motor (with encoder)

This is a key control part, and since it rotates reversibly, we need to consider an
installation method that will prevent backlash. Initially, we used a servo used in
hobby radio-controlled cars (Photo 7.2). The reason for this is that: 1) the unit
has a built-in gear reduction device. 2) there is a potentiometer directly connected
to the output shaft inside, which can be used as feedback for control. (The
existing amplifier is not used.) 3) a gear can be machined and attached to the
output shaft, allowing the handle shaft to be driven via the gear. 4) a bearing is
inserted in the output shaft, so there is little backlash. When building such a
prototype, using a radio-controlled servo is one practical option. Toy
manufacturers also use radio-controlled servos in their prototyping.

(8) Pedal-driven geared motor (with encoder)

This is also an important part and is used for one-way rotation. Similarly, a servo
was used for this part as well. The reasons are: 1) It is a gear reduction device as a
unit. 2) A pulley can be attached to the output shaft and the rear wheel can be
driven with an O-ring belt. Alternatively, the rear wheel can be attached directly to
the output shaft. 3) A bearing is inserted in the output shaft, so there is little
backlash.

Photo 7.5
An example of a direct drive shaft with a rear wheel attached to the servo shaft. The case is
simply fixed to the chassis with a sponge cushion. The photo on the right shows the light-emitting
and light-receiving elements for the pulse encoder.

- 109 -

I removed the potentiometer and cut off the stopper on the output shaft gear so
that it would rotate in one direction.

Photo 7.6 Photo 7.7
Removing the bottom of the servo You can see the potentiometer
case reveals the motor and amplifier under the amplifier board.
board.
Potentiometer

motor

Photo 7.8 Photo 7.9

The amplifier board and potentiometer The servo gmplifier board hgs three
taken out leads coming from the receiver,

three going to the potentiometer,
and two going to the motor.

Photo 7.10
This is a stopper that limits the operating angle of the servo's main shaft gear.

The rotation feedback for the pedal drive was achieved by using the transmission
pulse of a photodiode through the rear wheel. In this way, by modifying the servo,
it was possible to create a bicycle that could run without falling over, but when it
came to mass production, each modification had to be done manually, so it was
not possible to do so. This is very useful when making your own prototype. Both
the handle motor and the pedal motor are power sources, so they become a source
of wvibration for the body, and these vibrations become a noise source for the

angular velocity sensor, so various ingenuity is required in the selection and

installation of parts, etc. When manufacturing a bicycle, countermeasures against
vibration are one of the most important issues.

- 110 -

(4) Frame
Molded resin has moderate rigidity and is lightweight, making it suitable for mass

production. For prototyping, various materials are used.

+ Thin (2, 3 mm) wooden board

Easy to process. Screws or wood screws are used to attach parts.

+ Aluminum plate (0.5 to 2 mm)

Easy to bend and drill holes. Also used for wheels.

- Stainless steel pipe (inner diameter ¢2.1, outer diameter ¢2.5 / inner diameter ¢3.0
, outer diameter ¢4.0)

Cut and use for front forks and tubes.

- Brass plate (0.25, 0.8 mm: used for shims)

Used in areas that require precision and strength. Joined with silver solder. Silver
solder can also be used to join other metals besides aluminum.

- ABS resin plate (plastic plate 1.0, 1.5, 2.0 mm thick)

Easy to cut and bend, and uses a special adhesive.

(5) Control Board

Soycoesao
O} -3

> £, evrm-w gy
¥

Photo 7.11

We also have a variety of leaded light—emitting and
light-receiving elements, as well as infrared receiving
amplifier boards.

Photo 7.12

The control board under development and a
dummy board used for measuring dimensions

- 111 -

Example of use

Gear mechanism

Geared motor
. 0.25t Brass
with encoder

Resin Block

o4
Top tube

Stainless Steel
Pipe

o5~

™.32:25

Plastic Gear ﬁ

) Front fork M1.4 1 screw
¢ 3.5 Stainless Steel Pipe

Downtube
tainl teel
I\:S)ia;n ess Stee Pass it through the round hole in
P part A and solder it with silver.
0.8T C
Brass

M5.5 X 0.5 tap
For mounting gear motors

Figure 7.7 Usage example (1)

Photo 7.13
Front wheel fork shaft and gear mechanism of
geared motor

- 112 -

aluminum foil

.) 672 |
: 1 taluminum
g Remove meat to
y i reduce weight
- < 8 AN n
Photo 7.14 (

Example of making a wheel from aluminum plate /)

Making the hub: Stainless steel Make multiple (even num—
pipe with inner diameter of ¢ 7 ber) cuts 4mm deep.

This hole is used as a slit for
the photoelectric sensor.

' O-ring tire
Fold the cut parts left
/ and right.
Two flanged bearings, in—
ner diameter ¢ 3 and
outer diameter ¢ 7 (‘ @ %

Use a round file to
M3 bolt Attached to the

shape the gap so there
wheel as an axle

are no sharp edges.

Front wheel hub stopper Rear wheel hub stopper
Front fork 0.8t
| ¢ 3.5 Stainless Steel Pipe brass 7
@ 2.5 Stainless Steel Pipe
N2 ©

0.8t brass

Clamped with nails and then silver soldered Silver

brazing

Figure 7.8 Usage example (2)

- 113 -

(5)Plastic Gear

Even if you use the reduction gear inside the servo, the torque transmission
between the output shaft of the servo and the drive shaft of the handle, etc. will
ultimately be done by gears. Normally, for this size, a plug gear with module 0.5
1s used. If the module is 0.5, any manufacturer's gears can be combined. The
combination used here is a spur gear, but there is also a worm gear. The
reduction ratio can be 1:10 or more, but the transmission efficiency is poor and
the torque generating axis of the worm and the mating axis are perpendicular,
making the bearing structure difficult. This combination of spur gears also seems
to be good for a reduction ratio of up to 1:5 per pair. Since the final reduction ratio
from the motor to the drive shaft is 1:64 to 1:150, a combination of 3 to 4 stages
can be used. If the reduction ratio of one pair is increased, the distance between
the two parallel shafts will also increase, and one of the spur gears will become
larger, making it difficult to work on the frame or wall where the bearings are
located. Regarding the bearings for the gear shaft, if the plate thickness (in the
case of brass) is 0.3 mm or more, it is fine to just drill a hole (¢ 1 to 2 mm), but
when it comes to the output shaft of the final stage, the shaft diameter becomes
thicker and a force is applied in the thrust direction . If the plate thicknessis 0.8
mm or more or is a thin plate, the shaft should be supported by a metal bearing

or bearing.
[] | |
[] L Ir\
vS>epped Collar Flanged bearing
Figure 7.9
7.6 About radio controlled servos

This is a servo used in radio-controlled cars, which moves proportionally
(proportional: the origin of the word "propo") in response to the tilt of the stick on
the corresponding channel of the transmitter. There are various types of servos,
from extremely small servos weighing 1.7g, to those used in large models such as
industrial helicopters, high-torque servos with multiple rotations for sail winches
on yachts, and servos specialized for robot joints. The servos used in bicycle
development are small in size, have high torque and speed, use bearings on the
output shaft, and have little radial backlash. The servos are as follows: Digital
servo, metal gear, with bearings Model: CT12-DMG Input voltage: 4.8 -6.0V
Speed: 0.12sec/60 ° Torque: 3.0kgm/4.8V Size: 12.0 x 23.2 x 24.8 (mm) Weight: 12.47
g Current consumption: 166mA

Photo 7.15
This is the servo | used the most this time.

-114 -

[When operating the steering wheel with the servo link mechanism |

The front wheels can be driven by a servo link mechanism without using a
spur gear. The range of motion and torque can be adjusted by changing the
length of the link arm.

This installation allows the front
fork to be wider than the servo's

Drec- [/ movable range, but the left side is
" tion \ N wider t.han the right' si‘de, which
causes imbalance. (This is called a
Frort fork The servo differential linkage.)
Link stick When in neutral, each arm and link
/ Right Angle rod should be at a right angle.

This 1s how it 1s distributed left and

. /‘ right.
Direc—
7 tion \ ﬁ \ / (In the world of radio-controlled
cars, there are many places where
Front fork The servo differential linkages are required.)

Figure 7.10

'

Photo 7.16
Example of front wheel drive by linkage

7.7 Servo Modification

This mechanism works by matching the feedback signal of the internal
potentiometer to a pulse signal that moves between a narrow lmsec and a wide
2msec, with a pulse width of 1.5msec. It is possible to control it using the pulse
signal as it is, but the movable range is £30° (total 60°), so its use is limited.

In the end, only the gear mechanism part is left and used. Previously, the
connections to the internal motor and potentiometer were soldered with lead wires,
but the latest ones have the metal leads of the motor and potentiometer soldered
directly to the servo board with protrusions, making them difficult to separate.
Also, some stoppers are molded into the structure and cannot be removed.

- 115 -

When using the servo as a front wheel drive axle

Fix this case to
the frame

Front foL Servo Horn

Figure 7.11

When fixing a boss (gear, pulley) to a shaft

with a screw

Screw the support ball
into the case.

Photo 7.17
An example of using the servo shaft for the front

wheel drive shaft. If the servo case is fixed to the
integrated with the frame.

chassis, it will be

When the inside diameter of B is larger than the outside di—
ameter of A, we need to find a stainless steel pipe that is

Jjust the right size to fill the gap.
Even if we try to cut it to fit by hand, we won't be able to

Brass shaft Plastic Gear
achieve the required precision.
boss
tap
’ O /
H <SSSSSssv——
Stainless - . .
Steel Pipe Drill a pilot hole the same Stainless After drilling pilot holes in the
yd . pipe and boss, they are put to—
diameter as the boss for Steel Pipe th i
the hexagon socket set gether an e tap 1s cut.
screw.
Figure 7.12

g 4 < o
:
(]

Photo 7.18

When fixing gears or pulleys to a shaft, the
inner metal pipe is also pierced and tapped.
This process requires high precision.

- 116 -

7.8 How to obtain parts and materials

Most industrial parts can be purchased online or at a hardware store.

A surprisingly good place to find them is the large fishing tackle stores. They stock
interesting materials for people who want to make or repair their own tackle. For
example, carbon rods, plastic tubes, stainless steel pipes, stainless steel wire,
carbon sheets, resin adhesives, etc. Each item comes in a variety of sizes and can
be purchased in small quantities. If you take a look at 100-yen stores, you'll find a
lot of useful items.

7.9 Tools I wish I had

A bench lathe or drill press can be used to make a variety of processed products,
but here we will consider how to do the work without them.

When using a drill to make holes in thin plates (around 0.2 mm thick) of resin or
metal, the holes will tear and the holes will not be drilled cleanly.

There is a punch called a disc cutter. There are two thick metal plates with several
holes ranging from @4 to @16, and the thin plate to be drilled is inserted into the
gap of about 2 mm, and a pin that matches the diameter is driven in from above to
make a round hole. The result is a clean finish, and the round piece that was
inserted and punched can also be used.

A tapered reamer is used to enlarge
the hole diameter of the shaft. If you
enlarge it with a round file, the center

Disc cutter (&
will shift and the precision will not be -
achieved. 0 l

0 0
A metal bending tool (pocket bender:
e l- & | Punched out
S o

made by Engineer) can bend thin

plates neatly at right angles. It can

also be bent into U-shapes and

stepped bends, and has a wide range Figure 7.13
of applications.

round piece

- 117 -

B

INDEX

AAItion CirCUIL <« e -r-rrrrrrrererrmrmrereeeanana e, 2.39-233-51.1
Addressing e 3.1.1(2)

AHB/APB - oot 3.2.4(10)

Angular Rate Sensor ««««««««««wwrwrrrrrrr 2.1+2.3.3-5.1.1-5.1.3
ARM ATChIteCLUIE -+ e rrrrrrerremrmenenaenenaeaneeeaens 3.2

ARM dlebuag «+«vvveeerererrrrnrsseseseisiiii it 3.3-3.3.4

ARM register ... 3.2.4(1)

Automatic Balancing -+« s 5.9

AJD COMVEISION *# v v e v e ererememtneietat ettt 2.8-5.1.1-Give it a try2.4
Bank Register .. 3.1.2(6)

Brushed DC Motor COLUIMTL =+« <« e rrrrrrrrermrmmmemeneneneneanns 2.1

LISt v v rr e e e e e e 4.53.3

CAGEEI ++ v vv e re e er e e e e e 1.1.1

Centrifugal force 5.4.1

IS e e e e 3.1.1(5)

CIVISTS - evvremremeemee e ettt et et column3.4

Control Register <« rw rwrrrrrerrr 5.1.2(5)

DEAd ZUOME v v rrrrrerrer et 5.2.3

DIVIA c v veeomree e et et 3.1.2(5)

Drift Compensation <+« s e 21.1-2.2:2.3.3-5.1

Duty Ratio «reeressrrrrreerrrrrresssss i 2.4.1+2.4.2+5.3.2-Give it a try2.3
D/A CONVEISION *# v e rrerrrrrrereeeatanatat e, 2.2-2.8-Give it a try2.4
1O Y IR 3.3.3

Falling fOrce -+ =+ s 5.4.1

TrEtCh v e 3.1.1(1)

Flag Register «---«orerrrer 3.1.2(2)

Flash type A/D CONVETrSION wr-rrrrrrrrrrrrrree e, 2.8.2(2)

FOLlOWETr CHICUIL v v e -rrrrrrrrereemeneneneietat et 2.3.2+2.3.3-Give it a try2.7

-121-

H
Handle Encoder -« owxoovrerrrremreee 5.2.1(5)-1.2.1
Handle mOtOE -« -« v -vrrrrrrrrrrramee e 7.3:7.5(2)-Give it a try2.3
Hbridge .. 2.4'2.5‘2.1(4)
I
TNErtial fOree <+« -« rrrrrrrrrrrereeeeeen et 5.4.1
Interrupt (TLCS-900) -+-vvvrrrermrereeeee e 3.1.3-4.2.1(1)*column3.1
Tterrupts (ARM) <« eeseevereeeeaeoieie i, 3.2.4(1)-4.2.1(4)
Inverting amplifier cireuit -« rrrrrreesssm s 2.3.2:2.3.3-Give it a try2.2
J
JITAG v cvveeeemmmem e e 3.3.2
K
L
M
IVIIPS +-cvve e emmeemee e et st et et column3.2
IMIULEIEASKIIG «++++rrrerererrrerererersrrnnanniinii 4.1.2
IVULEIPLEREE ++++++++eeeseeeeeeessssssssssssetetttttitittt column?2.4
N
NVIC oo 3.2.4(1)
0
ON-OFTF - cvveerreereneneneta e control 5.2.2
Optical receiver module === - - o 2.6.1+2.6.2+2.6.3+Give it a try2.6
P
Pedal COMErol -« cererereererermemeeeenetee et 5.3
Pedal TNOtor =« rwr e 1.3-7.5(3)
Program Counter ==« w e 3.1.2(4)
Proportional Control -« rerrerrr 5.2.1(8)-5.2.2-5.2.3
PWIM CONEIOL -« v e erereereemeemereee et 2.4.1-2.4.2-5.2.1(4)-5.3.2-Give it a try2.3
Q
R
Rail-to-Rail Op Amps «++rrrrrrrrrrrrrrrrrrrmrmmmmmmrnan 2.31
Remote control transSmiSSion <« -« r e rrrrrmemrmrreenenanes 2.6.3

-122-

RIS cvver et 3.1.1(2)*column3.3
R-2R Ladder Method <« rrrrrrrrrrrrmmree 2.8.3(1) «Give it a try2.4
S
Sample and HoLd - column?2.3
SErial DIAQ <cvvrrererememtneee ettt 2.9-933-51.1
Single TaSKing «««««rrrr s s 4.1.1
Stack Pointer «-«--orrrrrrrrrrrmrre e 3.1.2(2)
Starting TOrQUE « e column2.1
Status Register .. 3.1.2(2)
Steering wheel control -+« o o oo 5.9
Successive conversion method ««rrorrrrrrrrrrrrrri e 2.8.3(2)
QD - cvvvveeemeeeeme e s e et e ettt e 3.3.1-3.3.2
LT Y 3.3.3
T
Three-Terminal Regulator <« e 2.7
TLCS-900 architeCture -« vt rererrrrrremeremeneeeeeeaan, 3.1
TLCS-900 register «««wwrwrrrrrrsssssm sttt 3.1.2
MTEQLL - +vvvve e ereer e e e m e e et et e e 1.1.1
U
\%
Vector Table «xrorrerrrrrrremaee e 4.2.1(01)
VATEUAL GroOUIId -« -c v v rerrereremrneeeeananate e, 2.3.3-Give it a try2.1
\
VWHEEIDASE - v +vvv v e eeeenentnen et et et ettt 1.1.1-7.1
X
Y
Z

-123-

